20. The Metric Topology

Defn: Suppose \(d : X \times X \to R \). Then \(d \) is a metric on \(S \) if \(d \) satisfies the following conditions.

1.) \(d(x, y) \geq 0 \) for all \((x, y) \in X \times X \);
\(d(x, y) = 0 \) if and only if \(x = y \).

2.) \(d(x, y) = d(y, x) \) for all \((x, y) \in X \times X \).

3.) \(d(x, z) \leq d(x, y) + d(y, z) \forall x, y, z \in X \).

Example 1 (the euclidean metric on \(R^n \)):
\[
d_1(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}
\]
where \(x = (x_1, x_2, ..., x_n) \) and \(y = (y_1, y_2, ..., y_n) \).

Example 2 (the square metric on \(R^n \)):
\[
\rho(x, y) = \max_{1 \leq i \leq n} |x_i - y_i|
\]
where \(x = (x_1, x_2, ..., x_n) \) and \(y = (y_1, y_2, ..., y_n) \).

Example 3 (the discrete metric on \(X \)):
\[
d_3(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}
\]

Example 4: Let \(C = \) set of all continuous real-valued functions on \([0, 1]\).
\[
d_4(f, g) = \max \{|f(x) - g(x)| \mid x \in [0, 1]\}.
\]

Defn: \(B_d(p, r) = \{ x \in X \mid d(p, x) < r \} \)

Defn: If \(d \) is a metric, then
\[
\{ B_d(p, r) \mid , p \in X, r > 0 \}
\]
is a basis for the metric topology on \(X \) induced by \(d \).

Lemma: \(U \) is open in the metric topology on \(X \) induced by \(d \) if for every \(y \in U \), there exists an \(r > 0 \) such that \(B_d(y, r) \subset U \).

Defn: If \(X \) is a topological space, \(X \) is said to be metrizable if there exists a metric \(d \) on \(X \) which induces the topology on \(X \). A metric space is a metrizable space \(X \) together with a specific metric \(d \) that gives the topology on \(X \).
Defn: Let X be a metric space with metric d. A subset A of X is **bounded** if there exists a number M such that $d(a_1, a_2) \leq M$ for every $a_1, a_2 \in A$. If A is bounded and nonempty, the diameter of $A = \text{diam } A = \sup \{d(a_1, a_2) \mid a_1, a_2 \in A\}.$

Note that boundedness is not a topological property.

Thm 20.1: Let X be a metric space with metric d. Define $\overline{d} : X \times X \to \mathbb{R}$ by

$$\overline{d}(x, y) = \min\{d(x, y), 1\}.$$

Then \overline{d} is a metric that induces the same topology as d.

Defn: The metric \overline{d} is called the **standard bounded metric** corresponding to d.

Lemma 20.2: Let d and d' be two metrics on X; let \mathcal{T} and \mathcal{T}' be the topologies they induce, respectively. Then \mathcal{T}' is finer than \mathcal{T} if and only if for each $x \in X$ and each $\epsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x, \delta) \subset B_d(x, \epsilon)$.

Corollary \mathcal{T}' is finer than \mathcal{T} if there exists a $k > 0$ such that for all $x, y \in X$:

Thm 20.3: The topologies on \mathbb{R}^n induced by the euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n.

21 22