20. The Metric Topology

Defn: Suppose $d: X \times X \rightarrow R$. Then d is a metric on S if d satisfies the following conditions.

$$
\begin{aligned}
& \text { 1.) } d(x, y) \geq 0 \text { for all }(x, y) \in X \times X ; \\
& d(x, y)=0 \text { if and only if } x=y .
\end{aligned}
$$

2.) $d(x, y)=d(y, x)$ for all $(x, y) \in X \times X$.
3.) $d(x, z) \leq d(x, y)+d(y, z) \forall x, y, z \in X$.

Example 1 (the euclidean metric on R^{n}):

$$
d_{1}(\mathbf{x}, \mathbf{y})=\sqrt{\sum_{i-1}^{n}\left(x_{i}-y_{i}\right)^{2}}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
Example 2 (the square metric on R^{n}):

$$
\rho(\mathbf{x}, \mathbf{y})=\max _{\{1 \leq i \leq n\}}\left|x_{i}-y_{i}\right|
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
Example 3 (the discrete metric on X):

$$
d_{3}(x, y)= \begin{cases}0 & x=y \\ 1 & x \neq y\end{cases}
$$

Example 4: Let $C=$ set of all continuous realvalued functions on $[0,1]$.

$$
d_{4}(f, g)=\max \{|f(x)-g(x)| \mid x \in[0,1]\} .
$$

Defn: $B_{d}(p, r)=\{x \in X \mid d(p, x)<r\}$
Defn: If d is a metric, then

$$
\left\{B_{d}(p, r) \mid, p \in X, r>0\right\}
$$

is a basis for the metric topology on X induced by d.

Lemma: U is open in the metric topology on X induced by d if for every $y \in U$, there exists an $r>0$ such that $B_{d}(y, r) \subset U$.

Defn: If X is a topological space, X is said to be metrizable if there exists a metric d on X which induces the topology on X. A metric space is a metrizable space X together with a specific metric d that gives the topology on X.

Defn: Let X be a metric space with metric d. A subset A of X is bounded if there exists a number M such that $d\left(a_{1}, a_{2}\right) \leq M$ for every $a_{1}, a_{2} \in A$. If A is bounded and nonempty, the diameter of $A=$

$$
\operatorname{diam} A=\sup \left\{d\left(a_{1}, a_{2}\right) \mid a_{1}, a_{2} \in A\right\}
$$

Note that boundedness is not a topological property.

Thm 20.1: Let X be a metric space with metric d. Define $\bar{d}: X \times X \rightarrow R$ by

$$
\bar{d}(x, y)=\min \{d(x, y), 1\} .
$$

Then \bar{d} is a metric that induces the same topology as d.

Defn: The metric \bar{d} is called the standard bounded metric corresponding to d.

Lemma 20.2: Let d and d^{\prime} be two metrics on X; let \mathcal{T} and \mathcal{T}^{\prime} be the topologies they induce, respectively. Then \mathcal{T}^{\prime} is finer that \mathcal{T} if and only if for each $x \in X$ and each $\epsilon>0$, there exists a $\delta>0$ such that $B_{d^{\prime}}(x, \delta) \subset B_{d}(x, \epsilon)$.

Corollary \mathcal{T}^{\prime} is finer that \mathcal{T} if there exists a $k>0$ such that for all $x, y \in X$:

Thm 20.3: The topologies on R^{n} induced by the euclidean metric d and the square metric ρ are the same as the product topology on R^{n}.

