19. The Product Topology.

Defn: Let J be an index set. Given a set X, a **J-tuple** of elements of X is a function $\mathbf{x} : J \to X$. The α **th coordinate of** $\mathbf{x} = x_{\alpha} = \mathbf{x}(\alpha)$.

Defn: Let $X = \bigcup_{\alpha \in J} A_{\alpha}$.

 $\Pi_{\alpha \in J} A_{\alpha} = \text{the Cartesian product of } \{A_{\alpha}\}_{\alpha \in J} \\ = \{(x_{\alpha})_{\alpha \in J} \mid x_{\alpha} \in A_{\alpha} \text{ for each } \alpha \in J\}.$

That is, it is the set of all functions

 $\mathbf{x}: J \to \bigcup_{\alpha \in J} A_{\alpha}$ such that $\mathbf{x}(\alpha) \in A_{\alpha} \ \forall \alpha \in J$.

Defn: The **box topology** on $\prod_{\alpha \in J} X_{\alpha}$ is the topology generated by the basis

$$\{\Pi_{\alpha\in J}U_{\alpha} \mid U_{\alpha} \text{ open in } X_{\alpha}\}.$$

Defn: Let $S_{\alpha} = \{\pi_{\alpha}^{-1}(U) \mid U \text{ open in } X_{\alpha}\}$ The **product topology** on $\prod_{\alpha \in J} X_{\alpha}$ is the topology generated by the subbasis $S = \bigcup_{\alpha \in J} S_{\alpha}$. Thm 19.1, 2: Comparison of box and product topologies. Let \mathcal{B}_{α} be a basis for X_{α}

Basis for the box topology: $\{\Pi U_{\alpha} \mid U_{\alpha} \text{ open in } X_{\alpha}\}$ or $\{\Pi B_{\alpha} \mid B_{\alpha} \in \mathcal{B}_{\alpha}\}$

Basis for the product topology:

 $\{\Pi U_{\alpha} \mid U_{\alpha} \text{ open in } X_{\alpha}, \\ U_{\alpha} = X_{\alpha} \text{ for all but finitely many } \alpha\}$

or {
$$\Pi B_{\alpha} \mid B_{\alpha_i} \in \mathcal{B}_{\alpha_i}, i = 1, ..., n,$$

 $B_{\alpha} = X_{\alpha} \text{ for } \alpha \neq \alpha_i, i = 1, ..., n$ }

Hence box topology is finer then the product topology

Thm 19.3: Let A_{α} be a subspace of X_{α} . Then ΠA_{α} is a subspace of ΠX_{α} if both products are given the box topology or if both products are given the product topology.

Thm 19.4: If X_{α} is Hausdorff for all α then ΠX_{α} is Hausdorff in both the box and product topologies.

Thm 19.5: $\Pi \overline{A_{\alpha}} = \overline{\Pi A_{\alpha}}$ in both the box and product topologies.

Thm 19.6: Suppose $f_{\alpha} : X \to Y_{\alpha}$. Define $f : X \to \prod_{\alpha \in A} Y_{\alpha}$ by $f(x) = (f_{\alpha}(x))_{\alpha \in A}$. Let $\prod X_{\alpha}$ have the product topology. Then f is continuous is and only if f_{α} is continuous $\forall \alpha$