19. The Product Topology.

Defn: Let J be an index set. Given a set X, a J-tuple of elements of X is a function $\mathbf{x}: J \rightarrow X$. The α th coordinate of $\mathbf{x}=x_{\alpha}=\mathbf{x}(\alpha)$.

Defn: Let $X=\cup_{\alpha \in J} A_{\alpha}$.
$\Pi_{\alpha \in J} A_{\alpha}=$ the Cartesian product of $\left\{A_{\alpha}\right\}_{\alpha \in J}$ $=\left\{\left(x_{\alpha}\right)_{\alpha \in J} \mid x_{\alpha} \in A_{\alpha}\right.$ for each $\left.\alpha \in J\right\}$.

That is, it is the set of all functions

$$
\mathbf{x}: J \rightarrow \cup_{\alpha \in J} A_{\alpha} \text { such that } \mathbf{x}(\alpha) \in A_{\alpha} \forall \alpha \in J
$$

Defn: The box topology on $\Pi_{\alpha \in J} X_{\alpha}$ is the topology generated by the basis

$$
\left\{\Pi_{\alpha \in J} U_{\alpha} \mid U_{\alpha} \text { open in } X_{\alpha}\right\}
$$

Defn: Let $\mathcal{S}_{\alpha}=\left\{\pi_{\alpha}^{-1}(U) \mid U\right.$ open in $\left.X_{\alpha}\right\}$
The product topology on $\Pi_{\alpha \in J} X_{\alpha}$ is the topology generated by the subbasis $\mathcal{S}=\cup_{\alpha \in J} \mathcal{S}_{\alpha}$.

Thm 19.1, 2: Comparison of box and product topologies. Let \mathcal{B}_{α} be a basis for X_{α}

Basis for the box topology: $\left\{\Pi U_{\alpha} \mid U_{\alpha}\right.$ open in $\left.X_{\alpha}\right\}$

$$
\text { or }\left\{\Pi B_{\alpha} \mid B_{\alpha} \in \mathcal{B}_{\alpha}\right\}
$$

Basis for the product topology:
$\left\{\Pi U_{\alpha} \mid U_{\alpha}\right.$ open in X_{α},

$$
\left.U_{\alpha}=X_{\alpha} \text { for all but finitely many } \alpha\right\}
$$

or $\left\{\Pi B_{\alpha} \mid B_{\alpha_{i}} \in \mathcal{B}_{\alpha_{i}}, i=1, \ldots, n\right.$,

$$
\left.B_{\alpha}=X_{\alpha} \text { for } \alpha \neq \alpha_{i}, i=1, \ldots, n\right\}
$$

Hence box topology is finer then the product topology
Thm 19.3: Let A_{α} be a subspace of X_{α}. Then ΠA_{α} is a subspace of ΠX_{α} if both products are given the box topology or if both products are given the product topology.

Thm 19.4: If X_{α} is Hausdorff for all α then ΠX_{α} is Hausdorff in both the box and product topologies.

Thm 19.5: $\Pi \overline{A_{\alpha}}=\overline{\Pi A_{\alpha}}$ in both the box and product topologies.

Thm 19.6: Suppose $f_{\alpha}: X \rightarrow Y_{\alpha}$. Define $f: X \rightarrow \Pi_{\alpha \in A} Y_{\alpha}$ by $f(x)=\left(f_{\alpha}(x)\right)_{\alpha \in A}$. Let ΠX_{α} have the product topology. Then f is continuous is and only if f_{α} is continuous $\forall \alpha$

