Thm 19.1, 2: Comparison of box and product topologies. Let \mathcal{B}_α be a basis for X_α

Basis for the box topology: $\{\prod U_\alpha \mid U_\alpha \text{ open in } X_\alpha \}$

or $\{\prod B_\alpha \mid B_\alpha \in \mathcal{B}_\alpha \}$

Basis for the product topology:

$\{\prod U_\alpha \mid U_\alpha \text{ open in } X_\alpha \}$,

$U_\alpha = X_\alpha$ for all but finitely many α

or $\{\prod B_\alpha \mid B_\alpha \in \mathcal{B}_\alpha, \ i = 1, \ldots, n, \ B_\alpha = X_\alpha \text{ for } \alpha \neq \alpha_i, \ i = 1, \ldots, n \}$

Hence box topology is finer then the product topology.

Thm 19.3: Let A_α be a subspace of X_α. Then ΠA_α is a subspace of ΠX_α if both products are given the box topology or if both products are given the product topology.

Thm 19.4: If X_α is Hausdorff for all α then ΠX_α is Hausdorff in both the box and product topologies.

HW p. 118: 3, 5, 6, 7

Thm 19.5: $\overline{\Pi A_\alpha} = \overline{\Pi A_\alpha}$ in both the box and product topologies.

Thm 19.6: Suppose $f_\alpha : X \to Y_\alpha$. Define $f : X \to \Pi_{\alpha \in A} Y_\alpha$ by $f(x) = (f_\alpha(x))_{\alpha \in A}$. Let ΠX_α have the product topology. Then f is continuous is and only if f_α is continuous $\forall \alpha$.