Thm 19.1, 2: Comparison of box and product topologies. Let \mathcal{B}_{α} be a basis for X_{α}

Basis for the box topology: { $\Pi U_{\alpha} \mid U_{\alpha}$ open in X_{α} } or { $\Pi B_{\alpha} \mid B_{\alpha} \in \mathcal{B}_{\alpha}$ }

Basis for the product topology:

 $\{\Pi U_{\alpha} \mid U_{\alpha} \text{ open in } X_{\alpha}, \\ U_{\alpha} = X_{\alpha} \text{ for all but finitely many } \alpha\}$

or $\{\Pi B_{\alpha} \mid B_{\alpha_i} \in \mathcal{B}_{\alpha_i}, i = 1, ..., n, \\ B_{\alpha} = X_{\alpha} \text{ for } \alpha \neq \alpha_i, i = 1, ..., n\}$

Hence box topology is finer then the product topology

Thm 19.3: Let A_{α} be a subspace of X_{α} . Then ΠA_{α} is a subspace of ΠX_{α} if both products are given the box topology or if both products are given the product topology.

Thm 19.4: If X_{α} is Hausdorff for all α then ΠX_{α} is Hausdorff in both the box and product topologies.

HW p. 118: 3, 5, 6, 7

Thm 19.5: $\Pi \overline{A_{\alpha}} = \overline{\Pi A_{\alpha}}$ in both the box and product topologies.

Thm 19.6: Suppose $f_{\alpha} : X \to Y_{\alpha}$. Define $f : X \to \prod_{\alpha \in A} Y_{\alpha}$ by $f(x) = (f_{\alpha}(x))_{\alpha \in A}$. Let $\prod X_{\alpha}$ have the product topology. Then f is continuous is and only if f_{α} is continuous $\forall \alpha$