\magnification 2400 \parindent 0pt \parskip 13pt \pageno=18 \hoffset -0.2truein \hsize 7.1truein \vsize 9.2truein \def\u{\vskip -10pt} \def\v{\vskip -5pt} 19. The Product Topology. Defn: Let $J$ be an index set. Given a set $X$, a \break {\bf J-tuple} of elements of $X$ is a function ${\bf x}: J \rightarrow X$. The {\bf $\alpha$th coordinate of x} = $x_\alpha$ = {\bf x}$(\alpha)$. Defn: Let $\{A_\alpha\}_{\alpha \in J}$ be an indexed family of sets. Let $X = \cup_{\alpha \in J}A_\alpha$. The {\bf cartesian product} of $\{A_\alpha\}_{\alpha \in J}$, denoted by $\Pi_{\alpha \in J} {A_\alpha}$, is defined to the the set of all J-tuples $(x_\alpha)_{\alpha \in J}$ of elements of $X$ such that $x_\alpha \in A_\alpha$ for each $\alpha \in J$. That is, it is the set of all functions \break ${\bf x}: J \rightarrow \cup_{\alpha \in J}A_\alpha$ such that ${\bf x}(\alpha) \in A_\alpha \forall \alpha \in J$. Defn: The {\bf box topology} on $\Pi_{\alpha \in J} {X_\alpha}$ is the topology generated by the basis \centerline{$\{\Pi_{\alpha \in J} {U_\alpha} ~|~ U_\alpha$ open in $X_\alpha\}$.} Defn: Let ${\cal S}_\alpha = \{ \pi_\alpha^{-1}(U) ~|~ U$ open in $X_\alpha\}$ \hfil \break The {\bf product topology} on $\Pi_{\alpha \in J} {X_\alpha}$ is the topology generated by the subbasis ${\cal S} = \cup_{\alpha \in J} {\cal S}_\alpha$. \end Let $\pi_j: \Pi_{i=0}^n X_i \rightarrow X_j$, $\pi_j(x_1, ..., x_n) = x_j$. $\pi_j$ is the projection of $\Pi_{i=0}^n X_i $ onto the $j$th component. Note: