19. The Product Topology.

Defn: Let J be an index set. Given a set X, a J-tuple of elements of X is a function $\mathbf{x}: J \rightarrow X$. The α th coordinate of $\mathbf{x}=x_{\alpha}=\mathbf{x}(\alpha)$.

Defn: Let $\left\{A_{\alpha}\right\}_{\alpha \in J}$ be an indexed family of sets. Let $X=\cup_{\alpha \in J} A_{\alpha}$. The Cartesian product of $\left\{A_{\alpha}\right\}_{\alpha \in J}$, denoted by $\Pi_{\alpha \in J} A_{\alpha}$, is defined to the the set of all J-tuples $\left(x_{\alpha}\right)_{\alpha \in J}$ of elements of X such that $x_{\alpha} \in A_{\alpha}$ for each $\alpha \in J$.

That is, it is the set of all functions $\mathbf{x}: J \rightarrow \cup_{\alpha \in J} A_{\alpha}$ such that $\mathbf{x}(\alpha) \in A_{\alpha} \forall \alpha \in J$.

Defn: The box topology on $\Pi_{\alpha \in J} X_{\alpha}$ is the topology generated by the basis

$$
\left\{\Pi_{\alpha \in J} U_{\alpha} \mid U_{\alpha} \text { open in } X_{\alpha}\right\}
$$

Defn: Let $\mathcal{S}_{\alpha}=\left\{\pi_{\alpha}^{-1}(U) \mid U\right.$ open in $\left.X_{\alpha}\right\}$ The product topology on $\Pi_{\alpha \in J} X_{\alpha}$ is the topology generated by the subbasis $\mathcal{S}=\cup_{\alpha \in J} \mathcal{S}_{\alpha}$.

