18. Continuous Functions

Defn: $f^{-1}(V)=\{x \mid f(x) \in V\}$.
Defn: $f: X \rightarrow Y$ is continuous af for every V open in $Y, f^{-1}(V)$ is open in X.

Lemma: f continuous if and only if for every basis element $B, f^{-1}(B)$ is open in X.

Lemma: f continuous if and only if for every subbases element $S, f^{-1}(S)$ is open in X.

Tho 18.1: Let $f: X \rightarrow Y$. Then the following are equivalent:
(1) f is continuous.
(2) For every subset A of $X, f(\bar{A}) \subset \overline{f(A)}$.
(3) For every closed set B of $Y, f^{-1}(B)$ is closed in X .
(4) For each $x \in X$ and each neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subset V$.

Defn: $f: X \rightarrow Y$ is a homeomorphism iff f is a bijection and both f and f^{-1} is continuous.

Defn: A property of a space X which is preserved by homeomorphisms is called a topological property of X.

Defn: $f: X \rightarrow Y$ is an imbedding of X in Y iff $f: X \rightarrow f(X)$ is a homeomorphism.

Thm 18.2
(a.) (Constant function) The constant map $f: X \rightarrow Y, f(x)=y_{0}$ is continuous.
(b.) (Inclusion) If A is a subspace of X, then the inclusion map $f: A \rightarrow X, f(a)=a$ is continuous.
(c.) (Composition) If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, then $g \circ f: X \rightarrow Z$ is continuous.
(d.) (Restricting the Domain) If $f: X \rightarrow Y$ is continuous and if A is a subspace of X, then the restricted function $\left.f\right|_{A}: A \rightarrow Y,\left.f\right|_{A}(a)=f(a)$ is continuous.
(e.) (Restricting or Expanding the Codomain) If $f: X \rightarrow Y$ is continuous and if Z is a subspace of Y containing the image set $f(X)$ or if Y is a subspace of Z, then $g: X \rightarrow Z$ is continuous.
(f.) (Local formulation of continuity) If $f: X \rightarrow Y$ and $X=\cup U_{\alpha}, U_{\alpha}$ open where $\left.f\right|_{U_{\alpha}} U_{\alpha} \rightarrow Y$ is continuous, then $f: X \rightarrow Y$ is continuous.

Chm 18.3 (The pasting lemma): Let $X=A \cup B$ where A, B are closed in X. Let $f: A \rightarrow Y$ and $g: B \rightarrow Y$ be continuous. If $f(x)=g(x)$ for all $x \in A \cap B$, then $h: X \rightarrow Y$,

$$
h(x)=\left\{\begin{array}{ll}
f(x) & x \in A \\
g(x) & x \in B
\end{array}\right. \text { is continuous. }
$$

The 18.4: Let $f: A \rightarrow X \times Y$ be given by the equations $f(a)=\left(f_{1}(a), f_{2}(a)\right)$ where $f_{1}: A \rightarrow X, f_{2}: A \rightarrow Y$. Then f is continuous if and only if f_{1} and f_{2} are continuous.

Defn: A group is a set, G, together with a function $*: G \times G \rightarrow G, *(a, b)=a * b$ such that
(0) Closure: $\forall a, b \in G, a * b \in G$.
(1) Associativity: $\forall a, b, c \in G$,

$$
(a * b) * c=a *(b * c) .
$$

(2) Identity: $\exists e \in G$, such that $\forall a \in G$,

$$
e * a=a * e=a .
$$

(3) Inverses: $\forall a \in G, \exists a^{-1} \in G$ such that $a * a^{-1}=a^{-1} * a=e$.

Defn: A group G is commutative or abelian if $\forall a, b \in G, a * b=b * a$.

Defn: A topological group is a set, G, such that (1) G is a group.
(2) G is a topological space which is T_{1}.
(3) $*: G \times G \rightarrow G, *(a, b)=a * b$ and $i: G \rightarrow G, i(g)=g^{-1}$ are both continuous.

