18. Continuous Functions

Defn: $f^{-1}(V) = \{x \mid f(x) \in V\}.$

Defn: $f: X \to Y$ is continuous iff for every V open in Y, $f^{-1}(V)$ is open in X.

Lemma: f continuous if and only if for every basis element B, $f^{-1}(B)$ is open in X.

Lemma: f continuous if and only if for every subbasis element S, $f^{-1}(S)$ is open in X.

Thm 18.1: Let $f: X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (2) For every subset A of X, $f(\overline{A}) \subset \overline{f(A)}$.
- (3) For every closed set B of Y, $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Defn: $f: X \to Y$ is a homeomorphism iff f is a bijection and both f and f^{-1} is continuous.

Defn: A property of a space X which is preserved by homeomorphisms is called a topological property of X.

Defn: $f: X \to Y$ is an imbedding of X in Y iff $f: X \to f(X)$ is a homeomorphism.

Thm 18.2

- (a.) (Constant function) The constant map $f: X \to Y$, $f(x) = y_0$ is continuous.
- (b.) (Inclusion) If A is a subspace of X, then the inclusion map $f: A \to X$, f(a) = a is continuous.
- (c.) (Composition) If $f: X \to Y$ and $g: Y \to Z$ are continuous, then $g \circ f: X \to Z$ is continuous.
- (d.) (Restricting the Domain) If $f: X \to Y$ is continuous and if A is a subspace of X, then the restricted function $f|_A: A \to Y$, $f|_A(a) = f(a)$ is continuous.

- (e.) (Restricting or Expanding the Codomain) If $f: X \to Y$ is continuous and if Z is a subspace of Y containing the image set f(X) or if Y is a subspace of Z, then $g: X \to Z$ is continuous.
- (f.) (Local formulation of continuity) If $f: X \to Y$ and $X = \bigcup U_{\alpha}$, U_{α} open where $f|_{U_{\alpha}}U_{\alpha} \to Y$ is continuous, then $f: X \to Y$ is continuous.

Thm 18.3 (The pasting lemma): Let $X = A \cup B$ where A, B are closed in X. Let $f: A \to Y$ and $g: B \to Y$ be continuous. If f(x) = g(x) for all $x \in A \cap B$, then $h: X \to Y$,

$$h(x) = \begin{cases} f(x) & x \in A \\ g(x) & x \in B \end{cases}$$
 is continuous.

Thm 18.4: Let $f: A \to X \times Y$ be given by the equations $f(a) = (f_1(a), f_2(a))$ where $f_1: A \to X, f_2: A \to Y$. Then f is continuous if and only if f_1 and f_2 are continuous.

Defn: A group is a set, G, together with a function $*: G \times G \to G$, *(a,b) = a * b such that

- (0) Closure: $\forall a, b \in G, \ a * b \in G$.
- (1) Associativity: $\forall a, b, c \in G$, (a * b) * c = a * (b * c).
- (2) Identity: $\exists e \in G$, such that $\forall a \in G$, e * a = a * e = a.
- (3) Inverses: $\forall a \in G, \exists a^{-1} \in G \text{ such that } a * a^{-1} = a^{-1} * a = e.$

Defn: A group G is commutative or abelian if $\forall a, b \in G, \ a * b = b * a.$

Defn: A topological group is a set, G, such that

- (1) G is a group.
- (2) G is a topological space which is T_1 .
- $(3) *: G \times G \rightarrow G, *(a,b) = a * b$ and $i: G \rightarrow G, i(g) = g^{-1}$ are both continuous.