\magnification 2400 \pageno=7 \parindent 0pt \parskip 12pt \hsize 7.2truein \vsize 9.7 truein \hoffset -0.45truein \def\u{\vskip -7pt} \def\v{\vskip -6pt} \def\f{\vskip 16pt} Defn: If $X$ is an ordered set and $a \in X$, then the following are rays in $X$: \centerline{$(a, +\infty) = \{x ~|~ x > a\}, ~(-\infty, a) = \{x ~|~ x < a\}$,} \centerline{$[a, +\infty) = \{x ~|~ x \geq a\}, ~(-\infty, a] = \{x ~|~ x \leq a\}.$} Lemma: The collection of all open rays is a subbasis for the order topology. \vskip 6pt \vfil \hrule \vskip -6pt \vfil 15: The Product Topology Let ${\cal T}_X$ denote the topology on $X$ and ${\cal T}_Y$ denote the topology on $Y$. Defn: Let $X$ and $Y$ be topological Spaces. The {\bf product topology} on $X \times Y$ is the topology having as basis ${\cal B } = \{U \times V ~|~ U \in {\cal T}_X , V \in {\cal T}_Y \}$. Thm 15.1: If ${\cal B}_X$ is a basis for the topology of $X$ and ${\cal B}_Y$ is a basis for the topology of $Y$, then ${\cal D} = \{ U \times V ~|~ U \in {\cal B}_X , V \in {\cal B}_Y \}$ is a basis for the topology of $X \times Y$. Ex. 1: If $R$ has the standard topology, the product topology on $R \times R$ is the standard topology on $R^2$. Defn: Let $\pi_1: X_1 \times X_2 \rightarrow X_1$, $\pi_1(x_1, x_2) = x_1$. \break $\pi_1$ is the projection of $X_1 \times X_2$ onto the first component. \f Note: If $U \subset X_1$, then $\pi_{1}^{-1}(U) = U \times X_2$. Thus if $U$ is open in $X_1$, then $\pi_{1}^{-1}(U)$ is open in $ X_1 \times X_2$ \f Note: $\pi_{1}^{-1}(U) \cap \pi_{2}^{-1}(V) = U \times V$ \f Thm 15.2: The collection \hskip -20pt $${\cal S} = \{\pi_{1}^{-1}(U) ~|~ U \hbox{ open in} X \} \cup \{\pi_{2}^{-1}(V) ~|~ V \hbox{ open in} Y \}$$ is a subbasis for the product topology on $X \times Y$. \f\f \hrule HW p. 91: 4, 6 \end