Defn: If X is an ordered set and $a \in X$, then the following are rays in X :

$$
\begin{aligned}
& (a,+\infty)=\{x \mid x>a\}, \quad(-\infty, a)=\{x \mid x<a\} \\
& {[a,+\infty)=\{x \mid x \geq a\}, \quad(-\infty, a]=\{x \mid x \leq a\}}
\end{aligned}
$$

Lemma: The collection of all open rays is a subbasis for the order topology.

15: The Product Topology
Let \mathcal{T}_{X} denote the topology on X and \mathcal{T}_{Y} denote the topology on Y.

Defn: Let X and Y be topological Spaces. The product topology on $X \times Y$ is the topology having as basis $\mathcal{B}=\left\{U \times V \mid U \in \mathcal{T}_{X}, V \in \mathcal{T}_{Y}\right\}$.

Thm 15.1: If \mathcal{B}_{X} is a basis for the topology of X and \mathcal{B}_{Y} is a basis for the topology of Y, then $\mathcal{D}=\left\{U \times V \mid U \in \mathcal{B}_{X}, V \in \mathcal{B}_{Y}\right\}$ is a basis for the topology of $X \times Y$.

Ex. 1: If R has the standard topology, the product topology on $R \times R$ is the standard topology on R^{2}.

Defn: Let $\pi_{1}: X_{1} \times X_{2} \rightarrow X_{1}, \pi_{1}\left(x_{1}, x_{2}\right)=x_{1}$. π_{1} is the projection of $X_{1} \times X_{2}$ onto the first component.

Note: If $U \subset X_{1}$, then $\pi_{1}^{-1}(U)=U \times X_{2}$. Thus if U is open in X_{1}, then $\pi_{1}^{-1}(U)$ is open in $X_{1} \times X_{2}$

Note: $\pi_{1}^{-1}(U) \cap \pi_{2}^{-1}(V)=U \times V$

Thm 15.2: The collection
$\mathcal{S}=\left\{\pi_{1}^{-1}(U) \mid U\right.$ open in $\left.X\right\} \cup\left\{\pi_{2}^{-1}(V) \mid V\right.$ open in $\left.Y\right\}$
is a subbasis for the product topology on $X \times Y$.

HW p. 91: 4, 6

