Processing math: 30%

1. If p:(a,b)R, q:(a,b)R, and g:(a,b)R are continuous and a<t0<b, then there exists a unique function y=ϕ(t),   ϕ:(a,b)R that satisfies the initial value problem y,   y(t_0) = y_0,    y'(t_0) = y_1.

               A) True                         B) False

2. If A is a matrix whose elements consist of continuous functions of t, then there exists a unique function {\bf x}(t) = {\bf f}(t) that satisfies the initial value problem {\bf x}' = A{\bf x} ,   {\bf x}(t_0) = {\bf x_0},    {\bf x}'(t_0) = {\bf x_1}.

               A) True                         B) False

3. If A is a matrix whose elements consist of continuous functions of t, then there exists a unique function {\bf x}(t) = {\bf f}(t) that satisfies the initial value problem {\bf x}' = A{\bf x} ,   {\bf x}(t_0) = {\bf x_0}.

               A) True                         B) False

Answers