1. If p:(a,b)→R, q:(a,b)→R, and g:(a,b)→R are continuous and a<t0<b, then there exists a unique function y=ϕ(t), ϕ:(a,b)→R that satisfies the initial value problem y″, y(t_0) = y_0, y'(t_0) = y_1.
A) True
B) False
2. If A is a matrix whose elements consist of continuous functions of t, then there exists a unique function {\bf x}(t) = {\bf f}(t) that satisfies the initial value problem {\bf x}' = A{\bf x} , {\bf x}(t_0) = {\bf x_0}, {\bf x}'(t_0) = {\bf x_1}.
A) True
B) False
3. If A is a matrix whose elements consist of continuous functions of t, then there exists a unique function {\bf x}(t) = {\bf f}(t) that satisfies the initial value problem {\bf x}' = A{\bf x} , {\bf x}(t_0) = {\bf x_0}.
A) True
B) False