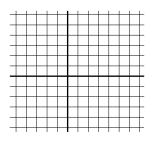

Quiz 4 SHOW ALL WORK Nov 9, 2018

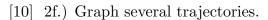
[15] 1.) Solve ty' + 4y = t

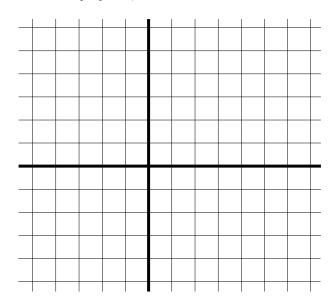
2.) Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -2 \\ 3 \end{bmatrix} e^{-2t}$

[7] 2a.) Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 in the

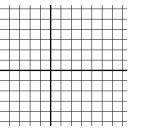

[3] 2b.) Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

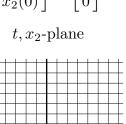
1							
						_	


-	-	1	L	-	_	<u> </u>	L	L	-
Τ									
Τ									
Т									
		1							


 x_1, x_2 -plane

[2] 2c.) The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.


- [3] 2d.) $\frac{dx_2}{dx_1} =$ _____
- [2] 2e.) Plot several direction vectors where the slope is 0 and where slope is vertical.



 t, x_2 -plane

 x_1, x_2 -plane

