\magnification 1200 \vsize 9.7truein \voffset -.3truein \hsize 7truein \hoffset -.5truein \nopagenumbers \parindent 0 pt \parskip 39pt \def\w{\vskip -30pt} $f: A \rightarrow B$ is onto ~iff~~ $f(A) = B$. \w $f: A \rightarrow B$ is onto ~iff~~ $b \in B$ implies there exists an $a \in A$ such that $f(a) = b$. \w $f: A \rightarrow B$ is onto ~iff~~ for all $b \in B$, there exists an $a \in A$ such that $f(a) = b$. \w $f: A \rightarrow B$ is NOT onto ~iff~~ there exists $b \in B$ s. t. there does not exist an $a \in A$ s. t. $f(a) = b$. \w Determine if the following functions are onto. Prove it. \w 1.) $f: R \rightarrow R$, $f(x) = x^2$ 2.) $f: [0, \infty) \rightarrow R$, $f(x) = x^2$ 3.) $f: [0, \infty) \rightarrow [0, \infty)$, $f(x) = x^2$ 4.) $f: R \rightarrow R$, $f(x) = x^3$ 5.) $f: R \rightarrow R$, $f(x) = 2$ 6.) $f: R \rightarrow R$, $f(x) = 8x + 2$ 7.) $f: R \rightarrow R$, $f(x) = x^2 + 3x$ 8.) $f: R \rightarrow R$, $f(x) = e^x$ 9.) $f: R \rightarrow R$, $f(x) = x^4 + x^2$ 10.) $f: R \rightarrow R$, $f(x) = sin(x)$ \end For example in N(a/b) = unknot = N(1/0), and $N(z/v) = 6_3 = N(13/8)$ $N\big({13 \over 8}\big) = N\big( {-2pq \pm 1 \over -2q^2 }\big)$ Hence (case 1) $13 = -2pq \pm 1$ or (case 2) $-13 = -2pq \pm 1$ Case 1a: $13 = -2pq + 1$ implies $pq = -6$ ($h = {1 + 1 \over 2} = 1$) If $p = 1$, $q = -6$. $N\big( {-2pq + 1 \over -2q^2 }\big) = N\big( {13 \over -72 }\big) \not=N\big( {13 \over 8 }\big) $ If $p = 2$, $q = -3$. $N\big( {-2pq + 1 \over -2q^2 }\big) = N\big( {13 \over -18 }\big) =N\big( {13 \over 8 }\big) $ If $p = 3$, $q = -2$. $N\big( {-2pq + 1 \over -2q^2 }\big) = N\big( {13 \over -8 }\big) =N\big( {13 \over 8 }\big) $ If $p = 6$, $q = -1$. $N\big( {-2pq + 1 \over -2q^2 }\big) = N\big( {13 \over -2 }\big) \not=N\big( {13 \over 8 }\big) $ Case 1b: $13 = -2pq - 1$ implies $pq = -7$ ($h = {1 - 1 \over 2} = 0$) If $p = 1$, $q = -7$. $N\big( {-2pq - 1 \over -2q^2 }\big) = N\big( {13 \over -98 }\big) \not=N\big( {13 \over 8 }\big) $ If $p = 7$, $q = -1$, $N\big( {-2pq - 1 \over -2q^2 }\big) = N\big( {13 \over -2 }\big) \not=N\big( {13 \over 8 }\big) $ Case 2a: $-13 = -2pq + 1$ implies $pq = 7$ ($h = {1 + 1 \over 2} = 1$) If $p = 1$, $q = -7$. $N\big( {-2pq + 1 \over -2q^2 }\big) = N\big( {-13 \over -98 }\big) \not=N\big( {13 \over 8 }\big) $ If $p = 7$, $q = -1$, $N\big( {-2pq + 1 \over -2q^2 }\big) = N\big( {-13 \over -2 }\big) \not=N\big( {13 \over 8 }\big) $ Case 2b: $-13 = -2pq - 1$ implies $pq = 6$ ($h = {1 - 1 \over 2} = 0$) If $p = 1$, $q = 6$. $N\big( {-2pq + 1 \over -2q^2 }\big) = N\big( {-13 \over -72 }\big) \not=N\big( {13 \over 8 }\big) $ If $p = 2$, $q = 3$. $N\big( {-2pq + 1 \over -2q^2 }\big) = N\big( {-13 \over -18 }\big) =N\big( {13 \over 8 }\big) $ If $p = 3$, $q = 2$. $N\big( {-2pq + 1 \over -2q^2 }\big) = N\big( {-13 \over -8 }\big) =N\big( {13 \over 8 }\big) $ If $p = 6$, $q = 1$. $N\big( {-2pq + 1 \over -2q^2 }\big) = N\big( {-13 \over -2 }\big) \not=N\big( {13 \over 8 }\big) $ Hence $(p, q) = (2, \pm 3), (3, \pm 2) $ $U = ({da - jb \over pb - qa} + {j \over p})\circ(h, -1) = ({d \over -q} + {j \over p})\circ(h, -1) $ and $({j \over p} + {da - jb \over pb - qa})\circ(h, -1) = ({j \over p} + {d \over -q})\circ(h, -1) $, Choosing any $d, j$ such that $pd - qj = 1$: $(p,q) = (2, 3), (d, j) = (-1, -1)$, $U = ({-1 \over -3} + {-1 \over 2})\circ(0, -1) = ({1 \over 3} + {-1 \over 2})\circ(0, -1) $ or $ ({-1 \over 2} + {1 \over 3})\circ(0, -1) = ({1 \over 2} + {-2 \over 3})\circ(0, -1) = $ $(p,q) = (2, -3), (d, j) = (-1, 1)$, $U = ({-1 \over 3} + {1 \over 2})\circ(1, -1) $ or $({1 \over 2} + {-1 \over 3})\circ(1, -1) $ $(p,q) = (3, 2), (d, j) = (1, 1)$, $U = ({1 \over -2} + {1 \over 3})\circ(0, -1) = ({1 \over 2} + {-2 \over 3})\circ(0, -1) $ $(p,q) = (3, -2), (d, j) = (1, -1)$, $U = ({1 \over 2} + {-1 \over 3})\circ(1, -1) $ \end