Note: You must be able to identify which techniques you need to use. For example:

Integration:

- * Integration by substitution
- * Integration by parts
- * Integration by partial fractions

Note: Partial fractions are also used in ch 6 for a different application.

For differential equations:

Is the differential equation 1rst order or 2nd order?

If 2nd order: Section 3.1, solve ay'' + by' + cy = 0.

Guess $y = e^{rt}$. $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$ implies $ar^2 + br + c = 0$, Need to have two independent solutions.

If $y = \phi_1$, $y = \phi_2$ are solutions to a LINEAR HOMOGENEC differential equation, $y = c_1\phi_1 + c_2\phi_2$ is also a solution

If 1st order: Is the equation linear or separable or ?

Solving first order differential equation:

Method 1 (sect. 2.2): Separate variables.

Method 2 (sect. 2.1): If linear [y'(t)+p(t)y(t) = g(t)], multiply equation by an integrating factor $u(t) = e^{\int p(t)dt}$.

$$y' + py = g$$

$$y'u + upy = ug$$

$$(uy)' = ug$$

$$\int (uy)' = \int ug$$

$$uy = \int ug$$

etc...

Method 3 (sect. 2.4): Solve Bernoulli's equation, $y' + p(t)y = g(t)y^n$,

when n > 1 by changing it to a linear equation by substituting $v = y^{1-n}$

direction field = slope field = graph of $\frac{dv}{dt}$ in t, v-plane. *** can use slope field to determine behavior of v including as $t \to \infty$. Equilibrium Solution = constant solution stable, unstable, semi-stable. Section 2.4: Existence and Uniqueness.

In general, for y' = f(t, y), $y(t_0) = y_0$, solution may or may not exist and solution may or may not be unique.

But we have 2 theorems that guarantee both existence and uniqueness of solutions under certain conditions:

1st order LINEAR differential equation:

Thm 2.4.1: If $p : (a, b) \to R$ and $g : (a, b) \to R$ are continuous and $a < t_0 < b$, then there exists a unique function $y = \phi(t), \phi : (a, b) \to R$ that satisfies the initial value problem

$$y' + p(t)y = g(t),$$

$$y(t_0) = y_0$$

1st order differential equation (general case):

Thm 2.4.2: Suppose z = f(t, y) and $z = \frac{\partial f}{\partial y}(t, y)$ are continuous on $(a, b) \times (c, d)$ and the point $(t_0, y_0) \in$ $(a, b) \times (c, d)$, then there exists an interval $(t_0 - h, t_0 + h) \subset (a, b)$ such that there exists a unique function $y = \phi(t)$ defined on $(t_0 - h, t_0 + h)$ that satisfies the following initial value problem:

$$y' = f(t, y), \quad y(t_0) = y_0.$$

Note the initial value problem

$$y' = y^{\frac{1}{3}}, \ y(0) = 0$$

has an infinite number of different solutions.

$$y^{-\frac{1}{3}}dy = dt$$

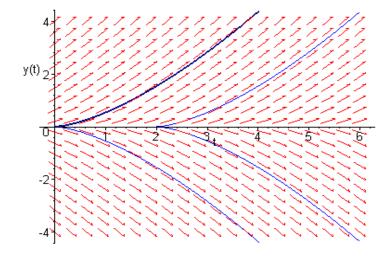
$$\frac{3}{2}y^{\frac{2}{3}} = t + C$$

$$y = \pm (\frac{2}{3}t + C)^{\frac{3}{2}}$$

$$y(0) = 0 \text{ implies } C = 0$$

Thus $y = \pm (\frac{2}{3}t)^{\frac{3}{2}}$ are solutions.

y = 0 is also a solution, etc.



Compare to Thm 2.4.2: $f(t,y) = y^{\frac{1}{3}}$ is continuous near (0, 0)But $\frac{\partial f}{\partial y}(t,y) = \frac{1}{3}y^{\frac{-2}{3}}$ is not continuous near (0, 0)since it isn't defined at (0, 0).

Section 2.4 example: $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$

 $F(y,t) = \frac{1}{(1-t)(2-y)}$ is continuous for all $t \neq 1, y \neq 2$

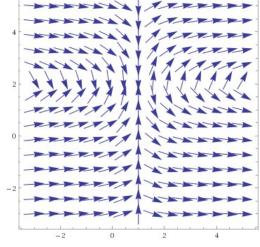
$$\frac{\partial F}{\partial y} = \frac{\partial \left(\frac{1}{(1-t)(2-y)}\right)}{\partial y} = \frac{1}{(1-t)} \frac{\partial (2-y)^{-1}}{\partial y} = \frac{1}{(1-t)(2-y)^2}$$

 $\frac{\partial F}{\partial y}$ is continuous for all $t \neq 1, y \neq 2$

Thus the IVP $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$, $y(t_0) = y_0$ has a unique solution if $t_0 \neq 1$, $y_0 \neq 2$.

Note that if $y_0 = 2$, $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$, $y(t_0) = 2$ has two solutions if $t_0 \neq 1$ (and if we allow vertical slope in domain. Note normally our convention will be to NOT allow vertical slope in domain of solution).

Note that if $t_0 = 1$, $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$, $y(1) = y_0$ has no solutions.



 $(1, 1/((1-t)(2-y)))/sqrt(1+1/((1-t)(2-y))^2))$

Solve via separation of variables: $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$ $\int (2-y)dy = \int \frac{dt}{1-t}$ implies $2y - \frac{y^2}{2} = -\ln|1-t| + C$ $y^2 - 4y - 2\ln|1-t| + C = 0$ $y = \frac{4\pm\sqrt{16+4(2\ln|1-t|+C)}}{2} = 2\pm\sqrt{4+2\ln|1-t|+C}$ $y = 2\pm\sqrt{2\ln|1-t|+C}$

Find domain: $2ln|1-t| + C \ge 0 \& t \ne 1 \& y \ne 2$

NOTE: the convention in this class to to choose largest possible connected domain where tangent line to solution is never vertical.

$$2ln|1-t| \ge -C$$
 and $t \ne 1$ and $y \ne 2$ implies

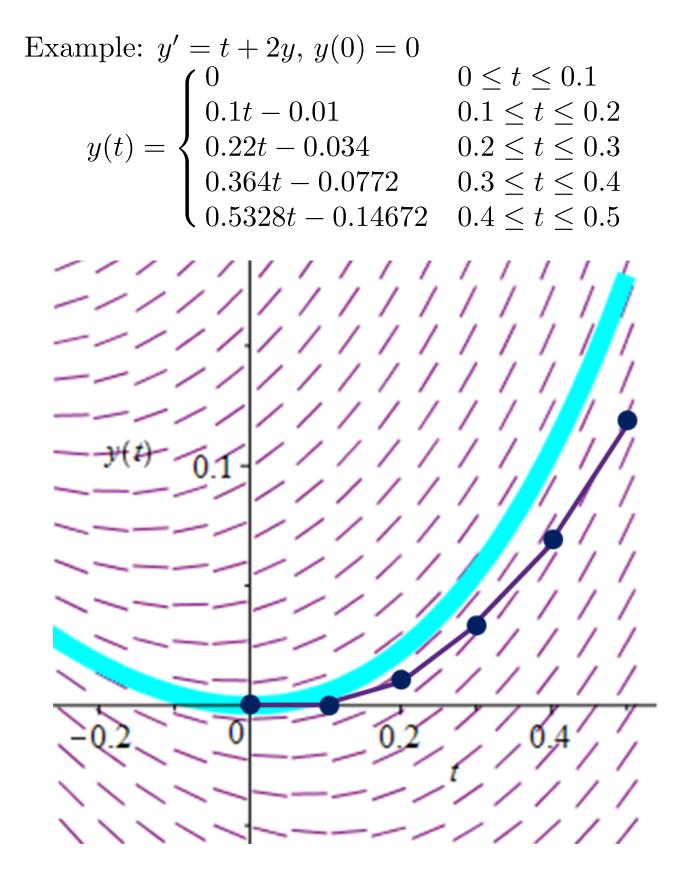
 $ln|1-t| > -\frac{C}{2}$ Note: we want to find domain for this C and thus this C can't swallow constants).

 $|1-t| > e^{-\frac{C}{2}}$ since e^x is an increasing function.

$$1 - t < -e^{-\frac{C}{2}}$$
 or $1 - t > e^{-\frac{C}{2}}$

Domain:
$$\begin{cases} t > e^{-\frac{C}{2}} + 1 & \text{if } t_0 > 1 \\ t < -e^{-\frac{C}{2}} + 1 & \text{if } t_0 < 1 \end{cases}$$

2.7: Approximating soln to IVP using multiple tangent lines.



2.8: Approximating soln to IVP using seq of fns, $\phi_{t+1}(t) = \int_{0}^{t} f(s, \phi_{t+1}(s)) ds$

$$\phi_{n+1}(t) = \int_0 f(s, \phi_n(s)) ds$$

Example: y' = t + 2y, y(0) = 0

 $\phi_0(t) = 0, \quad \phi_1(t) = \frac{t^2}{2}, \quad \phi_2(t) = \frac{t^2}{2} + \frac{t^3}{3},$

 $\phi_3(t) = \frac{t^2}{2} + \frac{t^3}{3} + \frac{t^4}{6}, \quad \phi_4(t) = \frac{t^2}{2} + \frac{t^3}{3} + \frac{t^4}{6} + \frac{t^5}{15}$

