
Note: You must be able to identify which techniques
you need to use. For example:

Integration:

* Integration by substitution

* Integration by parts

* Integration by partial fractions

Note: Partial fractions are also used in ch 6 for a
different application.

For differential equations:

Is the differential equation 1rst order or 2nd order?

If 2nd order: Section 3.1, solve ay′′ + by′ + cy = 0.

Guess y = ert.

ar2ert + brert + cert = 0 implies ar2 + br + c = 0,

Need to have two independent solutions.

If y = ϕ1, y = ϕ2 are solutions to a LINEAR HOMOGENEOUS
differential equation, y = c1ϕ1+c2ϕ2 is also a solution

If 1st order: Is the equation linear or separable or ?
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Solving first order differential equation:

Method 1 (sect. 2.2): Separate variables.

Method 2 (sect. 2.1): If linear [y′(t)+p(t)y(t) = g(t)],
multiply equation by an integrating factor

u(t) = e
∫

p(t)dt.

y′ + py = g
y′u+ upy = ug

(uy)′ = ug∫
(uy)′ =

∫
ug

uy =
∫
ug

etc...

Method 3 (sect. 2.4): Solve Bernoulli’s equation,

y′ + p(t)y = g(t)yn,

when n > 1 by changing it to a linear equation by
substituting v = y1−n

direction field = slope field = graph of dv
dt in t, v-plane.

*** can use slope field to determine behavior of v
including as t → ∞.
Equilibrium Solution = constant solution

stable, unstable, semi-stable.
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Section 2.4: Existence and Uniqueness.

In general, for y′ = f(t, y), y(t0) = y0,
solution may or may not exist and solution
may or may not be unique.

But we have 2 theorems that guarantee both existence
and uniqueness of solutions under certain conditions:

1st order LINEAR differential equation:

Thm 2.4.1: If p : (a, b) → R and g : (a, b) → R are
continuous and a < t0 < b, then there exists a unique
function y = ϕ(t), ϕ : (a, b) → R that satisfies the
initial value problem

y′ + p(t)y = g(t),
y(t0) = y0

1st order differential equation (general case):

Thm 2.4.2: Suppose z = f(t, y) and z = ∂f
∂y (t, y) are

continuous on (a, b) × (c, d) and the point (t0, y0) ∈
(a, b)×(c, d), then there exists an interval (t0−h, t0+
h) ⊂ (a, b) such that there exists a unique function
y = ϕ(t) defined on (t0 − h, t0 + h) that satisfies the
following initial value problem:

y′ = f(t, y), y(t0) = y0.
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Note the initial value problem

y′ = y
1
3 , y(0) = 0

has an infinite number of different solutions.

y−
1
3 dy = dt

3
2y

2
3 = t+ C

y = ±( 23 t+ C)
3
2

y(0) = 0 implies C = 0

Thus y = ±( 23 t)
3
2 are solutions.

y = 0 is also a solution, etc.
y’ = y1/3 

 

 

Figure 2.4.1 from Elementary Differential Equations and Boundary Value 

Problems, Eighth Edition by William E. Boyce and Richard C. DiPrima 

Compare to Thm 2.4.2:
f(t, y) = y

1
3 is continuous near (0, 0)

But ∂f
∂y (t, y) = 1

3y
−2
3 is not continuous near (0, 0)

since it isn’t defined at (0, 0).
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Section 2.4 example: dy
dt = 1

(1−t)(2−y)

F (y, t) = 1
(1−t)(2−y) is continuous for all t ̸= 1, y ̸= 2

∂F
∂y =

∂
(

1
(1−t)(2−y)

)
∂y = 1

(1−t)
∂(2−y)−1

∂y = 1
(1−t)(2−y)2

∂F
∂y is continuous for all t ̸= 1, y ̸= 2

Thus the IVP dy
dt = 1

(1−t)(2−y) , y(t0) = y0 has a un-

ique solution if t0 ̸= 1, y0 ̸= 2.

Note that if y0 = 2, dy
dt = 1

(1−t)(2−y) , y(t0) = 2 has

two solutions if t0 ̸= 1 (and if we allow vertical slope
in domain. Note normally our convention will be to
NOT allow vertical slope in domain of solution).

Note that if t0 = 1, dy
dt = 1

(1−t)(2−y) , y(1) = y0 has

no solutions.

(1, 1/((1− t)(2− y)))/sqrt(1 + 1/((1− t)(2− y))2)
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Solve via separation of variables: dy
dt = 1

(1−t)(2−y)∫
(2− y)dy =

∫
dt
1−t implies 2y − y2

2 = −ln|1− t|+C

y2 − 4y − 2ln|1− t|+ C = 0

y =
4±

√
16+4(2ln|1−t|+C)

2 = 2±
√
4 + 2ln|1− t|+ C

y = 2±
√

2ln|1− t|+ C

Find domain: 2ln|1− t|+ C ≥ 0 & t ̸= 1 & y ̸= 2

NOTE: the convention in this class to to choose
largest possible connected domain where tang-
ent line to solution is never vertical.

2ln|1− t| ≥ −C and t ̸= 1 and y ̸= 2 implies

ln|1− t| > −C
2 Note: we want to find domain �for

this C and thus this C can’t swallow constants).

|1− t| > e−
C
2 since ex is an increasing function.

1− t < −e−
C
2 or 1− t > e−

C
2

Domain:

{
t > e−

C
2 + 1 if t0 > 1

t < −e−
C
2 + 1 if t0 < 1.
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2.7: Approximating soln to IVP using multiple tang-
ent lines.

Example: y′ = t+ 2y, y(0) = 0

y(t) =


0 0 ≤ t ≤ 0.1
0.1t− 0.01 0.1 ≤ t ≤ 0.2
0.22t− 0.034 0.2 ≤ t ≤ 0.3
0.364t− 0.0772 0.3 ≤ t ≤ 0.4
0.5328t− 0.14672 0.4 ≤ t ≤ 0.5
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2.8: Approximating soln to IVP using seq of fns,

ϕn+1(t) =
∫ t

0
f(s, ϕn(s))ds

Example: y′ = t+ 2y, y(0) = 0

ϕ0(t) = 0, ϕ1(t) =
t2

2 , ϕ2(t) =
t2

2 + t3

3 ,

ϕ3(t) =
t2

2 + t3

3 + t4

6 , ϕ4(t) =
t2

2 + t3

3 + t4

6 + t5

15
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