Recall that a constant solution is an equilibrium solution. Thus its derivative is 0.

To find an equilibrium solution (i.e., constant solution), plug it in (for example, plug in y(t) = k or $x_1(t) = k_1, x_2(t) = k_2$ depending on variables used and if you have one DE or a system of two DEs). Since the derivative of a constant is zero, this is equivalent to setting the derivative = 0.

Find all equilibrium solutions and classify them (stable, asymptotically stable, semi-stable, unstable and if system of DEs, node, saddle, spiral, center). In the case of non-linear system of DEs, state all possibilities for type of equilibrium solution.

If the (system of) differential equation(s) does not have an equilibrium solution, state so (note 4 of the following 16 problems below do not have an equilibrium solution).

Hint: The eigenvalues of upper and lower triangular matrices are the diagonal entries.

Note: You do not need to draw any direction fields.

1.)
$$y' = (y-3)^4(y-5)^9$$
 $y = 3$ is semi-stable, $y = 5$ is unstable.

2.)
$$y' = y^2 + 2$$
 no equilibrium solution.

3.)
$$y' = sin(y)$$
 $y = 2n\pi$ is unstable, $y = (2n+1)\pi$ is asymptotically stable.

4.)
$$y' = sin(t)$$
 no equilibrium solution.

5.)
$$y' = \sin^2(y)$$
 $y = n\pi$ is semi-stable.

6.)
$$y' = \sin^2(t)$$
 no equilibrium solution.

7.)
$$y' = ty$$
 $y = 0$ is unstable.

8.)
$$x' = 4 - y^2$$
, $y' = (x+1)(y-x)$

If
$$4 - y^2 = 0$$
, then $y = \pm 2$

If
$$y = 2$$
, then $(x + 1)(y - x) = (x + 1)(2 - x) = 0$. Thus $x = -1, 2$.

If
$$y = -2$$
, then $(x+1)(y-x) = (x+1)(-2-x) = 0$. Thus $x = -1, -2$.

Jacobian matrix:
$$\begin{bmatrix} 0 & -2y \\ y - 2x - 1 & x + 1 \end{bmatrix}$$

For
$$(x,y) = (-1,2)$$
, Jacobian matrix is $\begin{bmatrix} 0 & -4 \\ 3 & 0 \end{bmatrix}$

Thus (x(t), y(t)) = (-1, 2) is a stable center or unstable spiral or asymptotically stable spiral.

For
$$(x,y)=(2,2)$$
, Jacobian matrix is $\begin{bmatrix} 0 & -4 \\ -3 & 3 \end{bmatrix}$

Thus (x(t), y(t)) = (2, 2) is an unstable saddle.

For (x,y) = (-1,-2), Jacobian matrix is $\begin{bmatrix} 0 & 4 \\ -1 & 0 \end{bmatrix}$

Thus (x(t), y(t)) = (-1, -2) is a stable center or unstable spiral or asymptotically stable spiral.

For
$$(x,y)=(-2,-2)$$
, Jacobian matrix is $\begin{bmatrix} 0 & 4 \\ 1 & -1 \end{bmatrix}$

Thus (x(t), y(t)) = (-2, -2) is an unstable saddle.

9.) x' = x - 2, y' = x - 1 no equilibrium solution.

10.)
$$\mathbf{x}' = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \mathbf{x}$$

One positive (1) and one negative eigenvalue (-2). Thus $(x_1(t), x_2(t)) = (0, 0)$ is an unstable saddle.

11.)
$$\mathbf{x}' = \begin{bmatrix} 1 & 0 \\ 5 & -2 \end{bmatrix} \mathbf{x}$$

One positive (1) and one negative eigenvalue (-2). Thus $(x_1(t), x_2(t)) = (0, 0)$ is an unstable saddle.

12.)
$$\mathbf{x}' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{x}$$

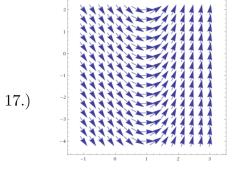
Purely imaginary eigenvalues i, -i. Thus $(x_1(t), x_2(t)) = (0, 0)$ is a stable center.

13.)
$$\mathbf{x}' = \begin{bmatrix} 1 & 0 \\ 5 & 2 \end{bmatrix} \mathbf{x}$$

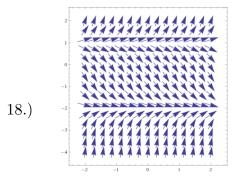
Two positive eigenvalues 1, 2. Thus $(x_1(t), x_2(t)) = (0, 0)$ is an unstable node.

14.)
$$\mathbf{x}' = \begin{bmatrix} 0 & 1 \\ -5 & -2 \end{bmatrix} \mathbf{x}$$

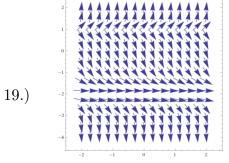
Two complex eigenvalues, $-1 \pm 2i$, with negative real part. Thus $(x_1(t), x_2(t)) = (0, 0)$ is an asymptotically stable spiral.

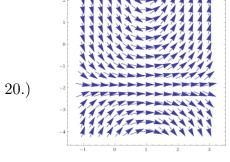

15.)
$$\mathbf{x}' = \begin{bmatrix} 0 & 1 \\ -5 & 2 \end{bmatrix} \mathbf{x}$$

Two complex eigenvalues, $1 \pm 2i$, with positive real part. Thus $(x_1(t), x_2(t)) = (0, 0)$ is an unstable spiral.

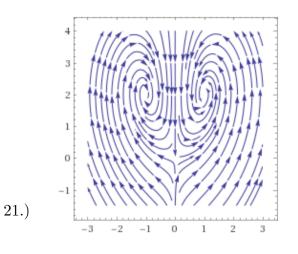

16.)
$$\mathbf{x}' = \begin{bmatrix} -1 & 0 \\ 5 & -2 \end{bmatrix} \mathbf{x}$$

Two negative eigenvalues -1, -2. Thus $(x_1(t), x_2(t)) = (0, 0)$ is an asymptotically stable node.


Problems 17 - 20 show the slope field for a first order differential equations. In addition to determining and classifying all equilibrium solutions (if any), also draw the trajectories satisfying the initial values y(0) = 1, y(1) = 0, y(1) = 2, y(0) = -3.


No equilibrium solution.

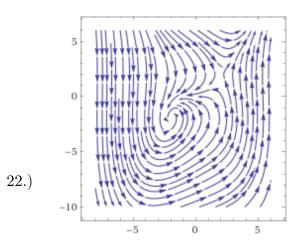
y = 1 is unstable. y = -2 is asymptotically stable.



y = 1 is unstable. y = -2 is semi-stable.

y = -2 is unstable.

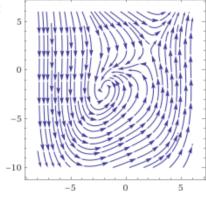
Problems 21-23 show the stream plot in the $x_1 - x_2$ -plane for a system of two first order differential equations In addition to determining and classifying all equilibrium solutions, also draw the trajectories satisfying the initial values $(x_1(0), x_2(0)) = (0, 1), (x_1(0), x_2(0)) = (1, 0), (x_1(0), x_2(0)) = (1, 2), (x_1(0), x_2(0)) = (-1, 0)$. Also describe the basins of attraction.

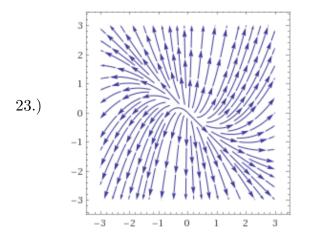

 $(x_1(t), x_2(t)) = (0, 0)$ is an unstable saddle.

 $(x_1(t), x_2(t)) = (1, 2)$ is an asymptotically stable node.

basin of attraction: $x_1 > 0$.

 $(x_1(t), x_2(t)) = (-1, 2)$ is an asymptotically stable node.


basin of attraction: $x_1 < 0$.



 $(x_1(t), x_2(t)) = (2, 2)$ is an unstable saddle.

 $(x_1(t),x_2(t))=(-2,-2)$ is an asympt. stable spiral.

basin of attraction:

 $(x_1(t), x_2(t)) = (0, 0)$ is an unstable node.

No basin of attraction: $x_1 < 0$.