Suppose an object moves in the 2D plane (the x_{1}, x_{2} plane) so that it is at the point $\left(x_{1}(t), x_{2}(t)\right)$ at time t. Suppose the object's velocity is given by

$$
\begin{aligned}
x_{1}^{\prime}(t) & =a x_{1}+b x_{2}, \\
x_{2}^{\prime}(t) & =c x_{1}+d x_{2}
\end{aligned}
$$

Or in matrix form $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x_{1}}{x_{2}}$
To solve, find eigenvalues and corresponding eigenvectors:
$\left|\begin{array}{cc}a-r & b \\ c & d-r\end{array}\right|=(a-r)(d-r)-b c=r^{2}-(a+d) r+a d-b c=0$.

$$
\text { Thus } r=\frac{(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2}
$$

Let $p=\operatorname{trace}(A)=a+d$ and let $q=\operatorname{det} A=a d-b c$
Then $r=\frac{p \pm \sqrt{p^{2}-4 q}}{2}$
Thus the type of solution depends on (p, q)

http://digital-library.theiet.org/content/journals/10.1049/iet-gtd_20080456

