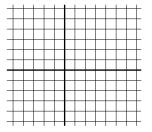
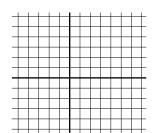
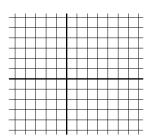

Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$


 t, x_1 -plane

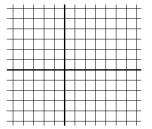
 t, x_2 -plane

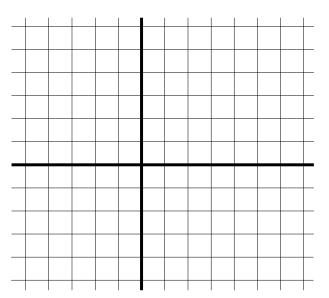


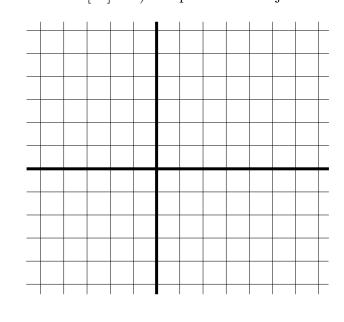
 x_1, x_2 -plane



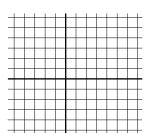
[3] 2b.) Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

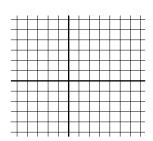

 t, x_1 -plane


 t, x_2 -plane

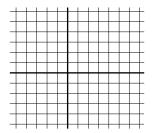


 x_1, x_2 -plane


- [2] 2c.) The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} & \\ & \end{bmatrix}$.
- [3] 2d.) $\frac{dx_2}{dx_1} =$ _____
- [2] 2e.) Plot several direction vectors where the slope is 0 and where slope is vertical.



Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$



$$t, x_2$$
-plane

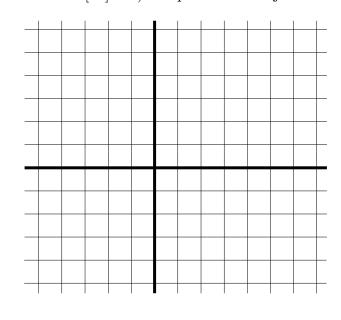
$$x_1, x_2$$
-plane

[3] 2b.) Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

$$t, x_1$$
-plane

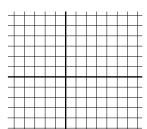
$$t, x_2$$
-plane

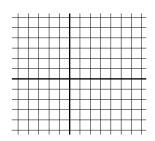

$$x_1, x_2$$
-plane



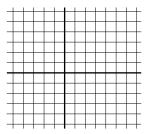
[2] 2c.) The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} & \\ & \end{bmatrix}$.

[3] 2d.)
$$\frac{dx_2}{dx_1} =$$


[2] 2e.) Plot several direction vectors where the slope is 0 and where slope is vertical.



Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$



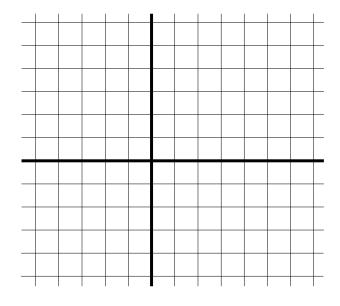
$$t, x_2$$
-plane

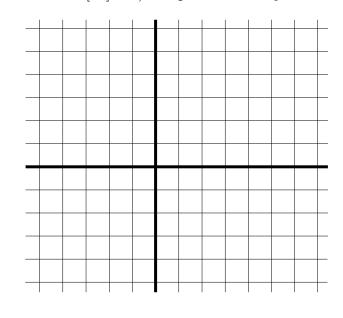
$$x_1, x_2$$
-plane

[3] 2b.) Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

$$t, x_1$$
-plane

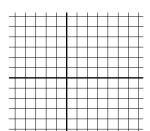
$$t, x_2$$
-plane


$$x_1, x_2$$
-plane

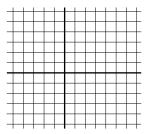


[2] 2c.) The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix}$.

[3] 2d.)
$$\frac{dx_2}{dx_1} =$$


[2] 2e.) Plot several direction vectors where the slope is 0 and where slope is vertical.

Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} 10 & 0 \\ -27 & 1 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^t + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{10t}$



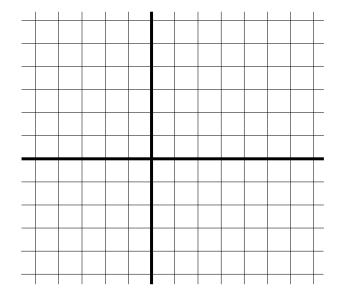
$$t, x_2$$
-plane

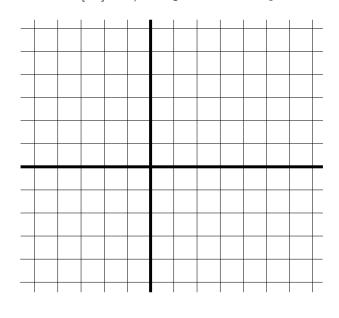
$$x_1, x_2$$
-plane

[3] 2b.) Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

$$t, x_1$$
-plane

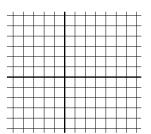
$$t, x_2$$
-plane

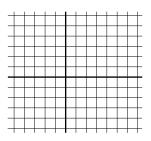

$$x_1, x_2$$
-plane



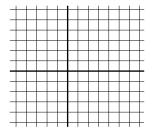
[2] 2c.) The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix}$.

[3] 2d.)
$$\frac{dx_2}{dx_1} =$$

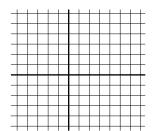

[2] 2e.) Plot several direction vectors where the slope is 0 and where slope is vertical.



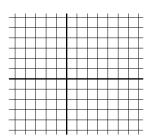
Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$


 t, x_1 -plane

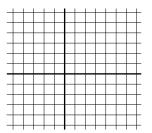
 t, x_2 -plane

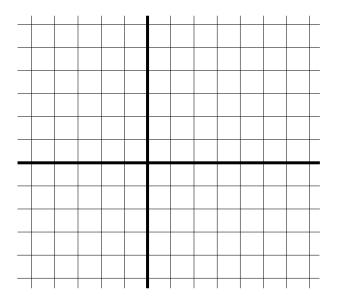


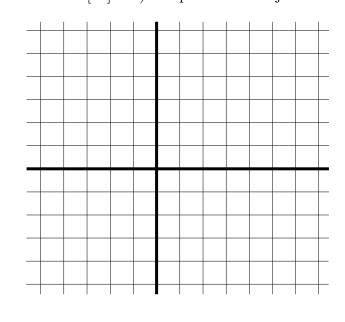
 x_1, x_2 -plane



[3] 2b.) Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the


 t, x_1 -plane


 t, x_2 -plane



 x_1, x_2 -plane

- [2] 2c.) The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} & \\ & \end{bmatrix}$.
- [3] 2d.) $\frac{dx_2}{dx_1} =$ ______
- [2] 2e.) Plot several direction vectors where the slope is 0 and where slope is vertical.

