Summary of sections 3.1, 3, 4: Solve linear homogeneous 2nd order DE with constant coefficients.

Solve $a y^{\prime \prime}+b y^{\prime}+c y=0 . \quad$ Educated guess $y=e^{r t}$, then $a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0$ implies $a r^{2}+b r+c=0$,

Suppose $r=r_{1}, r_{2}$ are solutions to $a r^{2}+b r+c=0$

$$
r_{1}, r_{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If $r_{1} \neq r_{2}$, then $b^{2}-4 a c \neq 0$. Hence a general solution is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$

If $b^{2}-4 a c>0$, general solution is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.

If $b^{2}-4 a c<0$, change format to linear combination of real-valued functions instead of complex valued functions by using Euler's formula.
general solution is $y=c_{1} e^{d t} \cos (n t)+c_{2} e^{d t} \sin (n t)$ where $r=d \pm i n$

If $b^{2}-4 a c=0, r_{1}=r_{2}$, so need 2nd (independent) solution: $t e^{r_{1} t}$

Hence general solution is $y=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}$.
Initial value problem: use $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ to solve for c_{1}, c_{2} to find unique solution.

Examples:

Ex 1: Solve $y^{\prime \prime}-3 y^{\prime}-4 y=0, \quad y(0)=1, y^{\prime}(0)=2$.
If $y=e^{r t}$, then $y^{\prime}=r e^{r t}$ and $y^{\prime \prime}=r^{2} e^{r t}$.
$r^{2} e^{r t}-3 r e^{r t}-4 e^{r t}=0$
$r^{2}-3 r-4=0$ implies $(r-4)(r+1)=0$. Thus $r=4,-1$
Hence general solution is $y=c_{1} e^{4 t}+c_{2} e^{-t}$
Solution to IVP:
Need to solve for 2 unknowns, $c_{1} \& c_{2}$; thus need 2 eqns:
$y=c_{1} e^{4 t}+c_{2} e^{-t}, \quad y(0)=1 \quad$ implies $\quad 1=c_{1}+c_{2}$
$y^{\prime}=4 c_{1} e^{4 t}-c_{2} e^{-t}, \quad y^{\prime}(0)=2$ implies $2=4 c_{1}-c_{2}$
Thus $3=5 c_{1} \&$ hence $c_{1}=\frac{3}{5}$ and $c_{2}=1-c_{1}=1-\frac{3}{5}=\frac{2}{5}$
Thus IVP soln: $y=\frac{3}{5} e^{4 t}+\frac{2}{5} e^{-t}$
Ex 2: Solve $y^{\prime \prime}-3 y^{\prime}+4 y=0$.
$y=e^{r t}$ implies $r^{2}-3 r+4=0$ and hence
$r=\frac{3 \pm \sqrt{(-3)^{2}-4(1)(4)}}{2}=\frac{3}{2} \pm \frac{\sqrt{9-16}}{2}=\frac{3}{2} \pm i \frac{\sqrt{7}}{2}$
Hence general sol'n is $y=c_{1} e^{\frac{3}{2} t} \cos \left(\frac{\sqrt{7}}{2} t\right)+c_{2} e^{\frac{3}{2} t} \sin \left(\frac{\sqrt{7}}{2} t\right)$
Ex 3: $y^{\prime \prime}-6 y^{\prime}+9 y=0$ implies $r^{2}-6 r+9=(r-3)^{2}=0$ Repeated root, $r=3$ implies general solution is $y=c_{1} e^{3 t}+c_{2} t e^{3 t}$

So why did we guess $y=e^{r t}$?
Goal: Solve linear homogeneous 2nd order DE with constant coefficients,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 \text { where } a, b, c \text { are constants }
$$

Standard mathematical technique: make up simpler problems and see if you can generalize to the problem of interest.

Ex: linear homogeneous 1rst order DE: $y^{\prime}+2 y=0$
integrating factor $u(t)=e^{\int 2 d t}=e^{2 t}$
$y^{\prime} e^{2 t}+2 e^{2 t} y=0$
$\left(e^{2 t} y\right)^{\prime}=0$. Thus $\int\left(e^{2 t} y\right)^{\prime} d t=\int 0 d t$. Hence $e^{2 t} y=C$
So $y=C e^{-2 t}$.
Thus exponential function could also be a solution to a linear homogeneous 2nd order DE

Ex: Simple linear homog 2 nd order DE $y^{\prime \prime}+2 y^{\prime}=0$.
Let $v=y^{\prime}$, then $v^{\prime}=y^{\prime \prime}$
$y^{\prime \prime}+2 y^{\prime}=0$ implies $v^{\prime}+2 v=0$ implies $v=e^{2 t}$.
Thus $v=y^{\prime}=\frac{d y}{d t}=C e^{-2 t}$. Hence $d y=C e^{-2 t} d t$ and

$$
y=c_{1} e^{-2 t}+c_{2} .
$$

$$
y=c_{1} e^{-2 t}+c_{2}
$$

Note 2 integrations give us 2 constants.
Note also that we the general solution is a linear combination of two solutions:

Let $c_{1}=1, c_{2}=0$, then we see, $y(t)=e^{-2 t}$ is a solution.
Let $c_{1}=0, c_{2}=1$, then we see, $y(t)=1$ is a solution.
The general solution is a linear combination of two solutions:

$$
y=c_{1} e^{-2 t}+c_{2}(1)
$$

Recall: you have seen this before:
Solve linear homogeneous matrix equation $A \mathbf{y}=\mathbf{0}$.
The general solution is a linear combination of linearly independent vectors that span the solution space:

$$
\mathbf{y}=c_{1} \mathbf{v}_{\mathbf{1}}+\ldots c_{n} \mathbf{v}_{\mathbf{n}}
$$

FYI: You could see this again:
Math 4050: Solve homogeneous linear recurrance relation $x_{n}-x_{n-1}-x_{n-2}=0$ where $x_{1}=1$ and $x_{2}=1$.

Fibonacci sequence: $x_{n}=x_{n-1}+x_{n-2}$

$$
1,1,2,3,5,8,13,21, \ldots
$$

Note $x_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$

Proof: $x_{n}=x_{n-1}+x_{n-2}$ implies $x_{n}-x_{n-1}-x_{n-2}=0$
Suppose $x_{n}=r^{n}$. Then $x_{n-1}=r^{n-1}$ and $x_{n-2}=r^{n-2}$
Then $0=x_{n}-x_{n-1}-x_{n-2}=r^{n}-r^{n-1}-r^{n-2}$
Thus $r^{n-2}\left(r^{2}-r-1\right)=0$.
Thus either $r=0$ or $r=\frac{1 \pm \sqrt{1-4(1)(-1)}}{2}=\frac{1 \pm \sqrt{5}}{2}$
Thus $x_{n}=0, \quad x_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n} \quad$ and $\quad f_{n}=\left(\frac{1-\sqrt{5}}{2}\right)^{n}$ are 3 different sequences that satisfy the
homog linear recurrence relation: $x_{n}-x_{n-1}-x_{n-2}=0$.
Hence $x_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$ also satisfies this
homogeneous linear recurrence relation.
Suppose the initial conditions are $x_{1}=1$ and $x_{2}=1$
Then for $n=1: x_{1}=1$ implies $c_{1}+c_{2}=1$
For $n=2: x_{2}=1$ implies $c_{1}\left(\frac{1+\sqrt{5}}{2}\right)+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)=1$
We can solve this for c_{1} and c_{2} to determine that

$$
x_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Second order differential equation:

Linear equation with constant coefficients:
If the second order differential equation is

$$
\begin{aligned}
& \qquad a y^{\prime \prime}+b y^{\prime}+c y=0 \\
& \text { then } y=e^{r t} \text { is a solution }
\end{aligned}
$$

Need to have two independent solutions.
Solve the following IVPs:
1.) $y^{\prime \prime}-6 y^{\prime}+9 y=0$

$$
y(0)=1, y^{\prime}(0)=2
$$

2.) $4 y^{\prime \prime}-y^{\prime}+2 y=0$

$$
y(0)=3, y^{\prime}(0)=4
$$

3.) $4 y^{\prime \prime}+4 y^{\prime}+y=0$

$$
y(0)=6, y^{\prime}(0)=7
$$

4.) $2 y^{\prime \prime}-2 y=0$

$$
y(0)=5, y^{\prime}(0)=9
$$

Derivation of general solutions:

Ch 3: we guessed $e^{r t}$ is a solution and noted that any linear combination of solutions is a solution to a homogeneous】 linear differential equation.

Section 3.1: If $b^{2}-4 a c>0: \quad y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$

Section 3.3: If $b^{2}-4 a c<0,:$
Changed format of $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$ to linear combination of real-valued functions instead of complex valued functions by using Euler's formula:

$$
e^{i t}=\cos (t)+i \sin (t)
$$

Hence $e^{(d+i n) t}=e^{d t} e^{i n t}=e^{d t}[\cos (n t)+i \sin (n t)]$
Let $r_{1}=d+i n, r_{2}=d-i n$
$y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$
$=c_{1} e^{d t}[\cos (n t)+i \sin (n t)]+c_{2} e^{d t}[\cos (-n t)+i \sin (-n t)]$
$=c_{1} e^{d t} \cos (n t)+i c_{1} e^{d t} \sin (n t)+c_{2} e^{d t} \cos (n t)-i c_{2} e^{d t} \sin (n t)$
$=\left(c_{1}+c_{2}\right) e^{d t} \cos (n t)+i\left(c_{1}-c_{2}\right) e^{d t} \sin (n t)$
$=k_{1} e^{d t} \cos (n t)+k_{2} e^{d t} \sin (n t)$

Section 3.4: If $b^{2}-4 a c=0$, then $r_{1}=r_{2}$.
Hence one solution is $y=e^{r_{1} t}$ Need second solution.
If $y=e^{r t}$ is a solution, $y=c e^{r t}$ is a solution.
How about $y=v(t) e^{r t}$?
$y^{\prime}=v^{\prime}(t) e^{r t}+v(t) r e^{r t}$
$\begin{aligned} y^{\prime \prime} & =v^{\prime \prime}(t) e^{r t}+v^{\prime}(t) r e^{r t}+v^{\prime}(t) r e^{r t}+v(t) r^{2} e^{r t} \\ & =v^{\prime \prime}(t) e^{r t}+2 v^{\prime}(t) r e^{r t}+v(t) r^{2} e^{r t}\end{aligned}$
$a y^{\prime \prime}+b y^{\prime}+c y=0$
$a\left(v^{\prime \prime} e^{r t}+2 v^{\prime} r e^{r t}+v r^{2} e^{r t}\right)+b\left(v^{\prime} e^{r t}+v r e^{r t}\right)+c v e^{r t}=0$
$a\left(v^{\prime \prime}(t)+2 v^{\prime}(t) r+v(t) r^{2}\right)+b\left(v^{\prime}(t)+v(t) r\right)+c v(t)=0$
$a v^{\prime \prime}(t)+2 a v^{\prime}(t) r+a v(t) r^{2}+b v^{\prime}(t)+b v(t) r+c v(t)=0$
$a v^{\prime \prime}(t)+(2 a r+b) v^{\prime}(t)+\left(a r^{2}+b r+c\right) v(t)=0$
$a v^{\prime \prime}(t)+\left(2 a\left(\frac{-b}{2 a}\right)+b\right) v^{\prime}(t)+0=0$
since $a r^{2}+b r+c=0$ and $r=\frac{-b}{2 a}$
$a v^{\prime \prime}(t)+(-b+b) v^{\prime}(t)=0 . \quad$ Thus $a v^{\prime \prime}(t)=0$.
Hence $v^{\prime \prime}(t)=0$ and $v^{\prime}(t)=k_{1}$ and $v(t)=k_{1} t+k_{2}$
Hence $v(t) e^{r_{1} t}=\left(k_{1} t+k_{2}\right) e^{r_{1} t}$ is a soln
Thus $t e^{r_{1} t}$ is a nice second solution.
Hence general solution is $y=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}$

