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ABSTRACT

In this paper, we classify generalized Montesinos tangles and the system of unoriented
tangle equations N(U + P) = K; and N(U + R) = K> is solved for a generalized
Montesinos tangle U where P and R are rational tangles and at least one of K7 and Ko
are Montesinos links.
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1. Introduction

A tangle is a 3-dimensional ball with strings properly embedded in it. In 1960’s, J.
H. Conway introduced a tangle as a part of knot diagram while he enumerated knots
and links in [3]. Tangles have been studied in knot theory and 3-manifold topology.
Tangles were first used to model protein-bound DNA complexes mathematically
by C. Ernst and D. W. Sumners [5]. Proteins bind to DNA segments to catalyze
several biological processes that can change the topology of DNA as a result. In
the tangle model, we assume the protein binding to DNA as a 3-dimensional ball
and the DNA segments bound by protein as strings embedded inside the ball. As
in Fig. 1, a tangle equation N(U + P) = K; is defined by a closure of the sum
of two tangles U and P that equates a knot K;. Since a protein action can be
modeled by replacing one tangle P with another tangle R, this gives a system of
tangle equations N(U + P) = K; and N(U + R) = K». See Fig. 1.

*Typeset title in 10 pt Times Roman uppercase and boldface. Please write down in pencil a short
title to be used as the running head.
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The system of tangle equations N(U 4+ P) = K; and N(U + R) = Ky was
solved for a generalized Montesinos tangle U where P and R are rational tangles
and K7 and Ks are rational knots in [4]. In this paper, we solve the system of
tangle equations N (U + P) = K; and N(U + R) = K> for a generalized Montesinos
tangle U where P and R are rational tangles and K; and K are either Montesinos
knots/links or rational knots/links assuming at least one of them is a Montesinos
knot /link.

In Sec. 1.1, we state the mathematical and biological applications of solving the
system of tangle equations. In Sec. 2, basic concepts about tangles and Montesinos
links are given. We classify generalized Montesinos tangles in Sec. 3. Equivalence
between two systems of tangle equations is described in Sec. 4. The system of
unoriented tangle equations involving Montesinos links is solved based on the clas-
sification of generalized Montesinos tangles in Sec. 5.

N N\
ULE) =K (U R)= K

N(U +P) =K, and N(U + R) = K,

Fig. 1. System of Tangle Equations.

1.1. Applications

Double branch covers of rational tangles and the sum of rational tangles are Seifert
fiber space with the base surface D?. Especially, double branch covers of rational
tangles are solid tori. Double branch covers of rational knots/links and Montesinos
knots/links are Seifert fiber space with the base surface S2. Replacement of a tangle
P with another tangle R in the system of tangle equations N(U + P) = K; and
N(U + R) = K> corresponds to drilling out a solid torus that is the double branch
cover of a rational tangle P and replacing it with another solid torus that is the
double branch cover of a rational tangle R. This process is a Dehn surgery along
a fiber in the Seifert fiber space as the double branch cover of K;. Thus solving
the system of tangle equations can lead us to classify the Dehn surgery in a Seifert
fiber space.

In the study of protein mechanisms, it is interesting but often difficult to figure
out the topology of DNA bound by protein. To explain a protein action on DNA
by using the tangle equations, we think the protein-DNA complex as a tangle P
and the outside of the complex as another tangle U and let the closure of the sum
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of P and U (Fig. 1) be equal to the topology of DNA, K. Since a protein action
is modeled by replacing a tangle P with another tangle R, this gives a system of
tangle equations N(U + P) = K; and N(U + R) = K. Thus solving this system of
tangle equations can help reveal possible topological configurations of DNA bound
by protein as well as the pathways of protein actions. For example, topoisomerases
are involved in the crossing change of DNA knots and thus its action can be modeled
by replacing +1 tangle with —1 tangle or vice versa as in Fig. 2. Cre recombinations
can be modeled by replacing 0 tangle with co tangle or vice versa as in Fig. 3. Refer

Fig. 4 for basic tangles.
— Ki @ — K

Fig. 2. Tangle equations modeling topoisomerase action.

Fig. 3. Tangle equations modeling Cre recombination.

2. Basic Concepts
2.1. Tangles

A 2-string tangle is a pair (B3,t), where B? is a 3 dimensional ball and ¢ is a pair
of arcs properly embedded in B3. Here, the four endpoints of the arcs are fixed at
NW = (e5,0), NE = (e7,0), SW = (e~ % ,0) and SE = (e~ 7, 0). Examples of

2-string tangles are given in Fig. 4. Two tangles are equivalent if they are ambient

isotopic keeping the boundary of B3 fixed.

A tangle is rational if it is ambient isotopic to the 0 tangle where the boundary
of B3 need not be fixed. A rational tangle can be obtained from the 0 tangle or the
oo tangle by alternating between horizontal half twists and vertical half twists. Hor-
izontal twists represent twists of NE and SE endpoints and vertical twists represent
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NW NE  NW NE  NW NE  NW NE
sw s osw S osw S osw s
(0) (0,0) (1) (-1)

0 tangle oo tangle +1 tangle —1 tangle

Fig. 4. 2-string tangles.

twists of SW and SE endpoints. The rational tangle obtained in this way can be
expressed as a vector (x1,--+,x,) where the numbers alternate between horizon-
tal twists and vertical twists with the last number always representing horizontal
twists. So if n is even, we start with vertical twists on the oo tangle and if n is odd,
we start with horizontal twists on the 0 tangle. See Fig. 5 for examples of a rational
tangle and nonrational tangles.

(4,1,2) Nonrational
Rational tangle tangles

Fig. 5. Rational and NonrationalTangles.

A rational tangle (1, ,x,) is uniquely identified by its continued fraction,

xn + ——— [3]. A rational tangle whose corresponding continued fraction is
Tpyq + - L
n—

an integer is callg(i an integral tangle. Two rational tangles are equivalent if and only
if their continued fractions are the same [3]. For example, the two tangles in Fig. 6
are equivalent. Since there are many vectors that have the same continued fractions,
the vector representation for a tangle is not unique. However, every rational tangle,
excluding the tangle (0,0), has a unique canonical form of vector representation
(1, ,xn), where x; € Z — {0} for 1 < i <mn — 1, all nonzero x;’s have the same
sign and n is odd [3].

The sum of two tangles A and B, A+ B is obtained by connecting NE and SE
endpoints of A to NW and SW endpoints of B, respectively as shown in Fig. 7.
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2+ =— =3+
1+ 5 e
(4,1,2)

Fig. 6. Equivalent tangles.

The numerator closure of a tangle A, N(A) is formed by connecting NW and NE
endpoints and SW and SE endpoints as shown in Fig. 7. The numerator closure
of a tangle or the sum of tangles forms a knot or link. See Fig. 7.

NN

(A AU
N(A) N(A+ B)

Fig. 7. Tangle sum and Numerator closures.

The circle product, Ao(cy,- - ,cy) of two tangles A and (¢1,- -, ¢,) is obtained
by starting with ¢; vertical (horizontal) half twists of SW and SE (NE and SE)
endpoints of A and alternating between horizontal (vertical) half twists and vertical
(horizontal) half twists when n is even (odd) (Fig. 8).

A generahzed Montesinos tangle or generalized M-tangle is a tangle of the form

(b +- +b Yo(hi,- -+, hmy) where %sareratlonaltangles Z # 6 fori<i<n
and hj’s are integers for 1 < j < m [4]. An M tangle is a tangle of the form
a1

b——i— —i—b— where Z— s are rational tangles and b— =+ 5 for 1 < i < n. A generalized
1 n 7 z

M-tangle is rational if all but at most one of the b—’s are integral. The sum of two
i
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n:even n:odd

Fig. 8. Circle product Ao (c1,--+ ,¢n).

rational tangles is rational if and only if one of the tangles is integral. In this case,
a+ +a a+ bx Al ; thta—|—c a n +c a—bx+c+dx
- = - = . Also, note that —+- = - —=z == .
R ’ bd b T T d
A rational knot (also called a 4-plat or 2-bridge knot/link), N (Z)’ is a knot
or link that can be written as the numerator closure of a rational tangle whose

. . . . a . . . a
corresponding continued fraction is 3 Two unoriented rational knots/links N (b—l)
1

and N(%), a; > 0 are the same if and only if a; = ay and b;bF"' = 1(mod a;) [2].
2

2.2. Montesinos links

A Montesinos knot/link has a projection as shown in Fig. 9 where e is an integral

a
tangle and b—l is a rational tangle for ¢ = 1,--- ,r and r > 3. Here, we assume
i

a:
a; and b; are relatively prime and 0 < a; < b;. This implies that b—’ is neither

an integral tangle nor the infinity tangle. The above Montesinos link is written as
a a,
N(= 4+ L +e) [1,4,10].
b1 b,

VLN I—— | ar/br

Fig. 9. Montesinos link.
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Note that Montesinos links do not include rational knots/links according to the
above definition although generalized M-tangles include rational tangles.

Theorem 2.1. (Classification of Montesinos Links) [1,2,10] Montesinos
a ar
links are classified by the ordered set of fractions (b—l, e ,b—T) where r > 3, up
1
to cyclic permutations and reversal of order, together with the integer e where a;
and b; are coprime integers such that 0 < a; < b; for 1 <i <r.

3. Classification of generalized Montesinos Tangles

As you can see in Fig. 8, (¢1,--+,¢,) in a circle product A o (¢q,--+ ,¢,) can be
considered as a 3-string tangle. A 3-string tangle is a 3-ball with 3 strings embedded
in the ball and 6 endpoints are fixed on the boundary of the ball (Fig. 10 (b)). The
3-string tangles used in the circle product will be regarded as 3-braids which will
be used to classify generalized Montesinos tangles in theorem 3.9.

A 3-braid is a set of 3 strings which are attached to vertical bars at the left and
at the right as in Fig. 10 (a). Each string always heads to the right as we move
along the string from the left vertical bar to the right vertical bar. A 3-braid can
be considered as a special case of a 3-string tangle as in Fig. 10.

I r
/\/_—\
I r
ls \/_\\/ r3
(a) B(3,3,1) (b)

Fig. 10. Converting a 3-braid into a 3-string tangle; (a) a 3-braid and (b) the corresponding
3-string tangle.

We denote a 3-braid by B(as,---,a,) as in Fig. 11 where a; € Z [6,7]. Since

(91, ,9x) in Ao (g1, - ,gx) can be considered as a 3-braid by placing vertical
twists horizontally and moving the SW endpoints of A and Ao (g1, ,gx) to the
east sides of A and Ao(gy,- -, gr) respectively as in Fig. 12, a circle product can be

related to the sum between a 2-string tangle and a 3-braid as follows: first, define
the sum between a 2-string tangle A and a 3-braid B, A 4+, B by connecting NE,
SE and SW endpoints of A to l1,ls and I3 of B, respectively. Then we can represent
Ao(g1, -+ ,gr) as A+, B(g1,- -+ , gx) where A is a 2-string tangle and B(g1,- - , gx)
is the 3-braid corresponding to (g1, - ,gx) in Ao (g1, -, gk)-
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-Gl I—I-a;; L -a,,,, -a1 .—.-a3 o -a,h1
a2 QAp—1 a2 Qp
| I | I

(a) n odd (b) n even

where 1 =

/ \
(a)Ao(2,1,1) (b)A 44 B(2,1,1)

Fig. 12. Circle product as the sum between a 2 string tangle and a 3-braid; (a) a circle product
and (b) the corresponding sum.

The braid sum, A +; B of two 3-braids A and B is defined by connecting
r1,72,73 of A to ly,la,l3 of B, respectively [6,7]. Every 3-braid B(hy,- -, h,,) can
be represented as a standard diagram B(g1,---,gx) +» SE for s € Z where g;’s
have the same sign and E is shown in Fig. 13 (a) [6]. Note that sE = E+ -+, E
(s-times) if s > 0 and SE = (—FE) +4 -+ - +4 (—F) (s-times) if s < 0.

g N
N

(a)E = B(1,-1,1) (b)—E = B(~1,1,-1)

Fig. 13. Braids; (a) E and (b) —E.

Theorem 3.1.
Let B(hi,++ ,hm) = B(g1, -+ ,9k) +b SE for s € Z where g;’s have the same sign
and E is shown in Fig. 13 (a). Then a generalized M-tangle can be represented as
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follows:
. . (%+...+Zl)o(gl,...,gk) if s is even
(b7+"'+bl)o(h1"" 7hm) = —1b1 _nbn
1 n (T** a )o(—gl’---7—gk70) ZfSlSOdd
1 n

where A x B is the vertical sum of tangles A and B defined by connecting SW and
SE endpoints of A with NW and NE endpoints of B, respectively [8].

Proof. (Xt Yo by, h) = (2 2 4y B(ha, -+ han)
a bl a bn bla lzln
= () FulBlan - ) +osE] = (Gt 38+ Blo, - gl tusE
=[G+ 20 (g gl o (L =L 1) o (L1, 1) 00 (1, -1, 1).
1 n
Let A = (E+--~+a—n)0(gl,-~- ,gk). For T = Ao (1,-1,1) 0 (1,-1,1)0--- 0

by b
(1,-1,1), let r4(T) be the rotation of a tangle T by 180° about the line from

the NW and the SE of A and 7(T') be the rotation of a tangle T' by 180° about
the line from the NW and the SE of T'. Note that r4(A o (1,—-1,1)) = r(A) and
r4(Ao(1,-1,1) o (1,-1,1)) = A. Thus by induction, Ao (1,—1,1) o (1,-1,1) o

-0 (1,—1,1) is deformed into A if s is even and r(A) if s is odd. Note that

a (079 a Gnp
r(A) =r((+ ) o(gr, o gr) = (r() % xr(5)) o (—g1, -+, — gk, 0) =
by by, by bn,
—by —b,
Tl** an)O( 91, ) gk,0)~ O

The following lemmas and the Euler bracket function are used to prove propo-
sition 3.6, 3.7 and 3.8.

Lemma 3.2. N(A+ C)= N(C + A) where A and C are arbitrary tangles.

Lemma 3.3. N(Ao(cy, - ,¢cn)+B)=N(A+Bo(cp, - ,c1)) if n is odd and B
is invariant under 180° rotations about both the x and y azes.

Proof. If n =1, N(Ao(¢1) + B) = N(A+ Bo (c1)) since B is invariant under
180° rotation about the z axis. Assume that N(Ao(¢1, -+ ,¢,)+B)=N(A+Bo
(¢ny -+ ,c1)) whenn =2k —1for k > 1. Then N(Ao(c1, -+ ,con+1)+B)=N(Ao
(Cl, e, Cok, 0)+BO(02k+1)) = ]\7(‘/40(017 L ,CQk,l)O(CQk,0)+BO(CQk+1)) = N(AO
(€1, scap—1)+Bo(capgr)o(c2x,0)) = N(Ao(cr,- -, con—1) + Bo(capt1, 2k, 0)).
Since B is invariant under 180° rotations about both the x and y axes, so are
Bo(cop+1) and then Bo (cagt1) o (ca,0). Thus by the induction hypothesis, N(Ao
(c1,++,cak—1) + Bo(copt1, C2k,0)) = N(A+ Bo(Capt1,C2k,0) 0 (Cop—1,- -+, 1)) =
N(A+ Bo(capt1,C2k,Cok—1,"" ,¢1)). By induction, we have the result. O

Note that since a rational tangle is invariant under 180° rotations about both the
x and y axes, lemma 3.3 holds for a rational tangle B.

Lemma 3.4. [4] (d1, - ,dm)o(c1,-+ ,¢n) = (d1, -+ ydm+ec1, - ,¢q) if nis odd.
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The Euler bracket function, Exy,--- ,x,] equals the sum of the products ob-
tained from the product 1- 2y - --- - x, by omitting zero or more disjoint pairs of
consecutive z;x;41 from the product [9]. The Euler bracket functions satisfy the
followings.

Lemma 3.5. [9]

(1) If n =0, then E[x1, - ,2,] = E[] =1.
(2) If n <0, then E[z1, - ,2,] = 0.
(3) E['r17"' 7l‘n]:E[xna 7:1;1]'

(4) Forn >1,
(a) Elxy,--- ,xp] = 21 E[xs,--- 2] + Elw3, -+, 2]
= CL‘71E‘[$17 e 7:1:7’7,71] + E[:El; e a'/L"I’LfQ]'
E[l‘l,"',xn] E[I‘n,"'7f£1]
b Tny o, T1) = =
)1 U= Bl ana] ~ Blonn o a]
h, AR = + - """
where [x, 1] = xpn $n71+"'+;11
(C) Let a = E[Ila e axn])b = E[l‘17~ o 51'n—1]' Ify = (71)n+1E[‘T27’ o 7In—1]
and x = (—=1)"" E[xy,- -+ ,3,], then br —ay = 1.
_ Eler,,en]Eldr, - \dm—1]+FElc1, - sen—1]E[d1, ,dm]
(3) lex,-senFdm, - di] = B Ba T Bl e Bl o]

Proposition 3.6. Suppose that 0 < a; < b; for 1 <i < n, h;’s have the same sign

Jor all j, hy #0 for 2 < j <t —1 and t is odd. For n > 2, (%4—---—1—2—")0
1 n
(hy,--- ,ht)z(%+-~-+§—m)0(l€1,--~ ks) where 0 < ¢; < d; for1 <i<m,k;’s
1 m
have the same sign for all j, kj #0 for 2 < j < s—1 and s is odd iff (a) n =m
and % = % for alli and (b) t = s and h; = k; for all j.
Proof. (=) Suppose that (E + -+ a—n) o (hy, -+ ,ht) = (C—1 + -4 c—m) o
bl bn dl dm
a an, c Cm
(kla"' aks)' Then (71++7) = (71++7)O(k17 7k8)o(_hta' o a_hl) =
b1 by, dq dm
(% + - 4 g—m) o (ki, - ,ks — hy,--+- ,—h1) by lemma 3.4. We can choose a
1 m
rational tangle z such that 0 < = < y, z and y are coprime and z #* %
Y i

. ay Gn T c1 Cm
f CThen N(— 4+ ...+ 2 4+ 2y = N(ZX ... ki, ke —
or any 14 enx (b1+ c+bn+yi Q(J(d1+ +dm)0(1, )
hta"'a_hl)_i_;) :xN(dic—"_+xd::+yo(_hlaa_ht+ksv;kl))
by lemma 3.3. Since — # d—z and — is not integral, by theorem 2.1, — =

Y i Yy

o (=h1,- -, —ht + kg, -+ ,k1). If we represent the rational tangle L as the
Y Y

canonical form (i1, - ,1,), then go (—hi, o —hy + kg, k1) = (I, -, 1a) 0
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(_hla"' a_ht+k87"' 7k1) = (117'" 7lu_h17"' ,_ht+k3,"' akl) = g Since two
tangles Eo(fhl,"' ,—he + ks, -+, k1) and T are the same, their continued frac-
Y Y

tions are the same. That is, by lemma 3.5 (5), [k1, -+ , ks—he, -+, —hi+ly, -+ 1] =

E[k17"' aks _hta"' 7_h1]E[l17"' 7lu71] +E[kla 7ks _ht7"' )_hQ]E[ll7"' 7lu}

E[k27“' 7kS _htv"' 7—h1]E[lla"' 7lu—1] +E[‘Z€27 7ks _h’t7“' 5_h2]E[l17"' 7ZU}

o E[klv"'7ks_ht7"'7_h1]y+E[k1a"'7ks_ht7"'7_h2]x o E since E o

N E[k27 7ks_ht7"' a_hl]y+E[k25 aks_h/ta"' 7_h2]x B Yy -

E[lla"'7lu} .

lyy~++ ,11] = —————— and d .

[ 1] Bl Ty 1] and x and y are coprime

Let E[kla 7k3_h't7"' a_hl] :U;,E[kl,"' aks_hta"' 7_h2] :b7E[k27"' 7ks_
ay + bz x

e, —h1] = a and Elks,-- ks — hy,--,—hs] = 0. Then 7(1,3;”,3: =

where (a,b) = 1 and (z,y) = 1. This implies that ay + bx = kz for some inte-
ger k. Then ay = (k — b)z. Since (z,y) = 1, z|a for any = such that 0 < z < y,

(x’y) = Land E ?é % for any i. Thus a = E[klﬂ 7ks 7ht7"' afhl] =0 and so
Y i
Elky, - ks —hg,--- ,—hi]
= k1, - ks — hy,--- ,—hy] = 0.

Elkg, -+ kg — hg,--- , —hq] LPRER t 1]=0

Since [ky, -+ ks — hgy -+, —hy] =

Elky, - k| E[=h1, - —hia] + Blk1, - k] Bl=ha, -+ —hi]

E[k’z[,-.. ,ks]E][_?h... ,—ht_]ﬂ +?[k2,--- 7ks_]1u[«j[_h1’... ]—ht]
Ekly"'yksEhl,"'7ht71 _Ek:l?."akalEhl,' 7ht 0

- = — by lemma 3.5,
Elha, RaJBl, ]~ Elkar oy Bl by 1

Elky,--- ,ks|E[h1,--- ,hy_1] — Elky,--- ,ks_1]E[h1,--- ,hs] = 0. Therefore

Elky, - ks  Ehy,- k]
Elki, -+ ks—1]  Elh1,-+  he_1]
2-string rational tangles.

(1) Assume that hy # 0. If ky # 0, then (ky1,--- ,ks) and (hq,---,ht) are both
unique canonical forms of a rational tangle since ¢ and s are odd, all i;’s have the
same sign, all k;’s have the same sign, h; € Z—{0} for1 < j <t—1and k; € Z—{0}
for 1 < j<s—1.Since (k1,---,ks) = (h1, -, ht) and they are unique, ¢ = s and
hj = k‘j for all j If k}l = O, then (h17~'~ ,ht) = (0,]{)2,]637'" ,k‘s) = (k/’37~'~ ,k‘s).
Then t = s — 2 and h; = kjyo for i = 1,2,--- ,¢ since h; and k; are nonzero for

which implies (k1,--- ,ks) = (h1,--+,ht) as

t=1,---,tand j =3,---,s, h;’s have the same sign and k;’s have the same sign.

Thus (X + -+ 2% o (hy, -+ he) = (L 4o+ Y 6 (0, ko, by, -+ , hy) which
bl bn dl dm

aiy Qp,

C1 Cm Cm
e MY = (= 2 =(—++— . Th
b1+ +bn) (d1+ +dm)0(07k2) (d1+ +d )O(ka) N
+=—o(k
; (k2))

ﬂ+...+al+g):]\7((01+"'+Cﬂ)o(k2)+g):N(Cl o

implies that (

N( +- 4

by b di dum dy dom,
by lemma 3.3 for a nonintegral rational tangle z such that 0 < x < y, x and y are
Y

x x + koy
— O —_—.

coprime and z # % for any i. By theorem 2.1, - (ko) = z + ko =
i Y

Thus z = x + koy aznd so ko = 0. This contradicts the hypothesis.
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(2) Assume that hy = 0. If k; # 0, then by the similar argument as in (1), he =0
which contradicts the hypothesis. If k; = 0, then (hs,---,ht) = (k3,---,ks) as
2-string rational tangles and both (hg,--- ,h:) and (ks,--- ,ks) are canonical rep-
resentation of rational tangles. Thus ¢ = s and h; = k; for 3 < j < ¢. Then

($+"'+a")o(0,h2,h3,--' hy) = (ﬂ+...+ cm)o(()’k%h?”... , hy) which im-
b1 b, dy dm

. a a C C C C
plies that (b—i+~-~+b—:) = (d71+"'+£)o(0’k2_h2) = (d71+”'+d%:)o(k2_h2)'

By the same argument as in (1), ko = ho.

Since s = ¢t and h; = k; for all 1 < j < ¢, (%+---+Z—”)o(h1,~--,ht) =
1 n

(%+-~-+§—:)O(k17~-~ , ks) implies that (%+~-~+%):(2—1+--~+2—2).N0w,
choose another nonintegral rational tangle %(7& g) such that 0 < z < w, (z,w) =1
z ¢ ) ax anp x° z c1 Cm T Z
a2 2% CThen N(Z o8 Ty 2y NS g O T2
an w%di or any 1% en (b1+ +bn+y+w) (dl+ +dm+y+w)
Then by theorem 2.1, % = % for all 4.
(<) It is trivial. ' z O

Proposition 3.7. Suppose that 0 < a; < b; for 1 <i < n, h;’s have the same sign

-b —by,
forall j, hj #0 for2 < j <t—1andt is odd. For n > 2, (—1** )o
aq Qp
—d —dm
(=hy, -+ —hg,0) = (—= %+ % Jo(—ki, -, —ks,0) where 0 < ¢; < d;, kj;’s
C1 m
have the same sign for all j, k; # 0 for2 < j < s—1 and s is odd iff (a) n =m
and % = % for alli and (b) t =s and hj = k; for all j.
-b -b —d —d
Proof. (=) Suppose (a—1 %ok —)o (=hy, -+, —hy,0) = (c—1 koeeok c—m)o
1 n 1 m
(—k1,- -+ ,—ks,0). By rotating both these tangles about the lines connecting NW
—b —b, —d —dm
and SE endpoints of (—= #-- - % Yo (=h1, -+, —hy,0) and (—= %+ - x )o
aq A, C1 Cm
(—k1,- -+, —ks,0) respectively, we have (% o4 Z—") o(hy, -, he) = (Ccl—1 4+
1 n 1
Z—m) o(ki,-+- ,ks). By proposition 3.6, we have the result.
(g) It is clear. O

Proposition 3.8. Suppose that 0 < a; < b; for 1 <i < n, h;’s have the same sign

Jorallj, hy #0 for2 <j <t—1 andt is odd. If(%+---+2—”)o(h17~--,ht):
1 n

—d —dm .
(C—l * ek Jo (=Fki,---,—ks,0) where 0 < ¢; < d;, kj’s have the same sign
1 m
for all j, k;j # 0 for 2 < j < s—1 and s is odd, then n = m = 1. That is,
al (479 . .
(—+-+ =)o (hy, - ,hs) is a rational tangle.

bl bn
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n —d _dm
Proof. Suppose (%+~-~+af)0(h1,~--,ht) = (— % % ) o
b1 b C1 Cm
n —d
(—ki,-+,—ks,0). Then (X 4+ oo+ D%y o (hy, ooy ks, k1, 0) = (—L &
b1 bn C1
_dm . . n
-k ). Taking numerator closure of both sides, N((% + -+ %) o
Cm 1 n
—d _dm m .
(hiy - heskg, - k1, 0)) = N(—2 s —9my = DSy 4D(S™). Since
C1 Cm, dl dm
a Ay, a Qnp
N((Gr 4 o 35 0 (e hoka ook 0) = N(GGE 4+ o+ 35) +
1 n 1 n
(0,k1,- -+ ks, ht,- -+ ,hy)) is either a rational link or a Montesinos link, m = 1.
n —d . . .
Then (% +- 4 Z—) o (hy, -+ hy) = — o (—ky,- -+ ,—ks,0) which is a rational
1 n 1
tangle. Thus n = 1. That is, (E+---+a—n)0(h1,-~- ,ht):EO(h17~-~ Jhe). O
b1 bn bl

Propositions 3.6, 3.7 and 3.8 give the following classification of generalized Mon-
tesinos tangles which are not rational tangles.

Theorem 3.9. (Classification of Generalized Montesinos Tangles)
A generalized Montesinos tangle which is not rational is uniquely represented as
one of the following:

(1) (2 44 22y 6 (g, hy) when n > 2,
blb bnb
(2) (;1* _n)o(—hh-",—ht,O) when n > 2.
aq n
where 0 < a; < b;, t is odd, h;’s have the same sign for all j and h; # 0 for
2<j<t-1

Proof. By theorems 3.1, a generalized Montesinos tangle has the form (% 4+ 4
1

—b —b
Z—")o(hl,-~- ,hy) or (a—1 %ok —) o (=hy, -+, —hs,0) where 0 < a; < b;, t is
n 1 n
odd, h;’s have the same sign for all j and h; # 0 for 2 < j <t — 1. By proposition
3.6 and 3.7, this is unique. O

The sum of two rational tangles need not be rational but the numerator closure
of the sum of two rational tangles is a rational knot.

j ot Jw + pt
L 3.10. /[5/ N(=+ —) =N
emma 3.10. [/ N(7 + ) = N(Jo o0

that pd —qj = 1.

) where d and q are any integers such

j da — jb
J + =) = N(=), then i = a/ J for some integers d,
P g pb—qa
q, and b’ such that pd — qj =

Lemma 3.11. [4] If N(
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4. Equivalent moves

In this section, we explain the equivalence between two systems of tangle equations.

Definition 4.1. [4] If there is a solution for U such that N(U + B) = K; and
N(U + E) = Ko, then K, is said to be obtained from K; by a (B, E)-move.

Definition 4.2. [4] A (B, E)-move is said to be equivalent to a (B’, E’)-move if
there exists a solution for U such that N(U + B) = K; and N(U + E) = K if and
only if there exists a solution for U’ such that N(U’'+ B’) = K; and N(U' + E’) =

K>5. The above two systems of tangle equations are said to be equivalent.

For example, (41, —1)-move is equivalent to (0, —2)-move as shown in Fig. 14
and the corresponding equivalent systems of tangle equations are given in Fig. 15.

(41) (=1) (0) (—2)

Fig. 14. Equivalent moves.

—K2

gzgor
B-es-

Fig. 15. Equivalent systems of tangle equations.
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x
In the next theorem, we give relations between (P, R)-move and (0, —)-move for

rational tangles P and R and thus equivalent systems of tangle equations.

Theorem 4.3. [/] Suppose that P and R are rational tangles where P =
(c1, - ,¢pn) forn odd. Ifg = Ro(—c¢p, -+ ,—c1) andU" = Uo(cy, -+ ,c1) (or equiv-
Y

alently, if R = o (c1,-++ yen) and U = U’ o (—cy,- -+ ,—¢p)), then for any knots
Y
K, and K, the system of tangle equations N(U + P) = K; and N(U + R) = K,
and the system of tangle equations N (U’ + %) = Ky, and N(U' + E) = Ky are
Y

equivalent.
0

Proof. N(U + P) = N(U + (¢1, -+ ,¢n)) = N({U o (¢cp,--- ,c1) + 1) by lemma
3.3 which is equal to N(U’ + %) where U’ = U o (¢, -+ ,c1). Also, N(U + R) =
N(UO(CTH"' ,01)0(—01,'” 7_Cn)+R) = N(UO(Cna"' 761)+RO(_C’M"' ,_Cl))
by lemma 3.3 which is equal to N(U" + g) where U’ = U o (cy,- -+ ,c1) and
X~ Ro (—=¢n, -+ ,—c1). Note that U' = U o (¢, - ,c1) if and only if U =
)

Uo(—cy,-+,—cy) and - Ro(—c¢p, -+ ,—c1)ifand only if R = §0(cl,--- ,Cnh

Y Y

Corollary 4.4. For any knots K1 and Ko, there exists a generalized Montesinos
tangle U such that N(U + P) = K; and N(U + R) = Ky where P and R are
rational knots if and only if there exists a generalized Montesinos tangle U’ such

that N(U’ + %) = Ky and N({U' + g) = K.

Proof. By theorem 4.3, if P = (¢1,- -+ ,¢p) for n odd, then U’ = U o (¢, ,¢1)

and £ = Ro (=¢p,--+,—c1) (or equivalently, U = U’ o (—¢1,-+- ,—¢,) and R =
Y

o (c1,- -+ ,¢n)). Moreover, U = U’ o (—cy,--,—cy,) is a generalized Montesinos

tangle if and only if U' = U o (¢, -+ ,¢1) is a generalized Montesinos tangle. O

Thus solving the system of tangle equations N (U’ + %) = Ky and N(U' + E) =

Y
K5 gives us the solutions to the system of tangle equations N(U + P) = K; and
N(U + R) = K and vice versa.

5. Solving tangle equations

First, the system of tangle equations is solved when s > 3 and ¢ > 3. That is, the
righthand side of equations (1) and (2) are both Montesinos links.
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Theorem 5.1. Suppose that a;,b;, e, x,y are integers and 0 < a; < b; for 1 <i <

s. For s,t > 3,
0 s
NU+ ) =N(2 4t 2 qe) (1)
1 by by
and N(U + 2) =N(Z 4.+ 2 1 ey) (2)
Yy U1 Ut

where zj,vj,ea are integers and 0 < z; <v; for 1 < j <t

and U =(== 4 -+ + C—n) o (hi, - ,hm) is a generalized M-tangle.

c

(dl dn

if and only if for s,t > 3 and for some 1 < j; <'s,

(1) Ifm=1, thenU = (ai—kajlil +---+M+M)o(el) andN(Z—1+~-~—|—
bjy  bjx big2  bjig 1

z a; a; a; a; x X
i+€2):N(i_~_ Jlil +,+ﬂ+ﬁ+7+el) wherefzez_el
Ut bj, ~ bji+ bjg2  bis y

x x
andt = s if — is anintegerandf:—kJregfelforsomekandt:5+1 if
Y Yy Uk

z . .
— 18 not an integer.
Y

(2) If m =3 and h,,, =0, then U = (== L 4 S +a31$2+m)o(e1,h2,0)
a_bjl al_)h:tl ab_h?Q ab'j111 r
and N + + +e N(GGR ¢ TAZL L DHF2 ) CHFL
( e e (bj1 bji+1 biz2  bjF1 haw+y
e1) where hy = Y andt = s if 17 is an integer and ho =
ey — €1 T hox +y

Uk

_Y for some k andt=s+1 if W s mot an integer.

zp +(e2 —e)vr T
(3) If m > 3 or if m =3 and h,, # 0, then assuming that h;’s have the same sign

and h; #0 for2 <i<m-—1,

(0,) U — (ai + a’jlil + - 4+ le:'zg + leiFQ) o (hh'-' ,hm) and
L b ban bJ13F3 R .
N(il+ ..+l+62):j\7( Jlil+...+ﬂ+ﬂ+
EU;L . Zih J1 bjlil 5 hbj1:F3 b.jl:F2
T [17 }—"_y [1)"'7 m]) where [17"'7 m]:ajl:':1+€1
l'E[hQ, : h‘ } +yE[h27 ) m] [h27"' ahm] bjliFl
for some j;.
—b. —b, b, s
(b) U:( It *7j1i1 LRI N1¥3 * ]1¥2)O(_h’17"' 7_hm70) and
L G GnE GnFs - GnF2 o w
N(il_|_..._|_l+62):N(J+Lﬂ+...+ﬁ+ﬂ
vl vt bj,  bji+1 bjirs  bjiFe

E[hl, s ,hm_l} — xE[hl, s ,hm]
[ yE[h27 T af]mel} - xE[hQa T 7hm]
Elhy,- -+ hm-1]  ajF1 .
= + ey for some J1.
Bl hr] by OISO
—b: —b, —bs —b
(c) m=3and U = (—* % DEL o NE2 Jlil)o(*hla:FL*hSaO)
~ a]% Aji+1 . ajlzlgfl ajyF1 a a
andN(fl—i—"'-i-*t—f—@z) = N(i+317i1+...+]17:':2+317:‘:1+
vy v bj,  bjx1 bjir2  bjig1

_|_

) where hs £ +1 and
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y(l + hl) - LL’(hl + h3 + h1h3)
+y — x(1 £ hg)

) where hy = e; F 1.

Note that if ho = 0 in Case 2, the solution is the same as the solution in Case 1.
We can consider only when m is odd since T o (hy,--- ,har) =T o (0,hy,--- , hag)
for a tangle T.

Proof. If U is rational, N(U) is a 4-plat but N(% + -+ % + e1) is a Mon-
1 s

tesinos link/knot by equation (1). It contradicts. So U is not rational. Since
U is a generalized M-tangle which is not rational, it can be written as U =

(2—1 e Z—”) o(hi, -+, hm) where ¢;, d; and h; are integers such that 0 < ¢; < d;
1
for 1 <i< nT,L 1<j<mandn>2 W.LO.G, we can assume m is odd.

Case 1: If m = 1, from equation (1),

0 c1 Cn

N(U‘FI): ((a+"'+jn)°(h1)+(0))
N(%+ ~+2—Z+hl)
:N(%+ --+Z—:+e1)
Then by theorem 2.1, h; = ey, G Qwithn:swherei: 1,---,n, j =

d; i
jlajl—’_lv"‘ 7871,27"' 7j1_2aj1_1Orj:jlajl_lv'” ,2>1787"‘ 7j1+2aj1+1
for some 1 < j; < s. Here, n > 3 since s > 3.
From equation (2),

x c C €
NU + =) :N((d—1+ +d—”)o(h1)+7)
1 n Y
“N(Z 4+ )+ Z6(hy) by lemma 3.3
dy dn” Yy
Cc1 Cn z
= e I - h
(d1 +--+ d + ” + h1)
P z
— (71 4+ o+ “t + 62)
(%1} t
Then by the above result, N(i1 deb g e2) = N(al onEl L D0F
1 vt bj,  bjx1 bjy 72

a; T T T
ZnFl + — 4+ e1). By theorem 2.1, e = — 4+ ¢; and ¢ = s if — is an integer and

biv1 Y y Yy
Z

) x T
Zk + ey = — + €1 for some k and t = s + 1 if — is not an integer.
Uk
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Case 2: Assume that m = 3 and h,, = 0. Then by equation(1),

0 c1 Cn,

N(U—&—I)ZN((dT+~--+a)0(h1,h2,0)+(0))
=N((G++ )0 ()
:N(%+~-+2—Z+h1)
=(%+m+%+m.
Then by theorem 2.1, h; = eq, 2—: = Z—j with n = s where ¢ = 1,--- ,n, j =

j17j1+1a"' 787132a"' 7j1_27j1_1Orj:jl,jl_la"' 72a1a83"' 7j1+27j1+1
for some 1 < j; < s. Here, n > 3.
From equation (2),

x ¢ Cn z
NU+E =N(Z 4+ DY 0 (hyy hey0) + 2
U+ ) =N 4 S0 (b, ha0) + )
¢ Cn x
=N((—+ -+ —)+(=)0(0,ho,h1)) by lemma 3.3
dl dn Y
¢ Cn x
=N({(—+ -+ -2 )0 (0,ho,0)+h
(et 2+ (D)0 (0,00,0) + )
C1 Cp
N h
(%1+ +dﬂ+h2‘é+1)
C1 Cn
=N n h
@ T a, Ty T
z z
= (il 4+ .+ ~t + 62)
(%1 (0
Then by the above result, N(ﬂ+---+ﬁ+eg) =N(%+M+---+M+
" . vy v bjy,  bjyx1 bj, w2
J1F1 . .
. By th 21, —— = dt=sif
bier ozt y + e1). By theorem 2.1, Tt 1y +e1 = ey an si Py is
an integer and +e = Zk + ey for some k and t = s+ 1 if is not
2T+ y Vg how +y

an integer.

Case 3: Assume that m > 3 or m = 3 and h,, # 0. If we assume that h;’s
have the same sign and h; # 0 for 2 < j < m — 1, then by theorem 3.9,

n —d _dn
U= (24 420 (hy, - hm) or (—L s« )o (=hi,+—hum,0).
dl dn C1 Cn
Since N(U) is a Montesinos link by equation (1), case (3) in theorem 3.9 is ruled
out. c c
() IU = (d—1 oot )0 (b oo i) where 0 < e < dy, m s odd, hy's have
1 n

the same sign, h; # 0 for 2 < j <m — 1, then by equation (1),
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0 n
N(U+ 1) =N+ Z2) 0 (b1, ) +(0))
1 dq dy
- ((%+--.+ ;—")+(0)o(hm,--- k1)) by lemma 3.3
1 n
C1 Cn
= - -5 hm7 7h
(B4t 24 )
C1 Cn 1
=N((oF + -+ )+ hy +
(G g, T, ~-+,+)
C1 Cp, E[hl, ,hm] o
=N(—+ -+ — b 77
(d1 + et a. + Elh», ,hm]) y proposition
ay a
N s
(b1 +- b +e1)
Since h;’s have the same sign, m is odd, m > 3 and h,,, # 0if m = 3, M
E[h2> e ahm]
cannot be an integer. Then by theorem 2.1, % = Z—J with n = s — 1 where i =
i J

1a"' 7naj:j1aj1+17"' 58a1727"' ajl_QOrj:jlaj1_17"' a271757"' 7j1+2
Elhy,-- ok - ,

nd ! ml _ %l + e for some 1 < j; < s. Here, n > 2.
E[hQ"" 7hm] bjliFl

From equation (2),

NU+Z) =N(L + 4 S0 (b ho) + (s o 1))
Yy dl dn
where ~ = (I, k).
Y
= ((%+---+2l)+(11,---Jk)o(hm,---,hl)) by lemma 3.3
1 n
:N(g—l+-~-+2—"+(ll,m,lk+hm,-~~,h1)) by lemma 3.4
1 n
C1 Cp,
=N(5+ -+ 5+ [, hay o s hn gy 12, 1))
dy dn
n E sy "y hm— s 7Ty tm
dl dn .’,UE[hQ, ?th—l] +yE[h’27 7hm]
by proposition 7?7 and lemma 3.5
:N(ﬂ+...+ﬁ+62)_
U1 Ut

Then by the above result, N(Z—1+~~~+ﬁ+eg) =N(—=— Ll 4 D0TF
v1 vy bj,  bj+ bji =3
ajv2 . B[Ry, hpmoi1]) +yE[hy, - ) Elhi, - hm]  aj 51

where = +e
bj,y2  wElho, -+ hym1] + yElhy, - 7hm]) Elhg, -+ hm]  bjF1 !
for some 1 < j; < s.
—d —d,
(2) IfU:(c—l*---* . -)o(—h1, -+, —hm,0) where 0 < ¢; < d;, m is odd, h;’s
1 n
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have the same sign, h;j # 0 for 2 < j <m — 1, then by equation (1),

0 —d —d,
N(U+7):N(( 1* X )0(—h1,"',—hm,0))
1 c1 Cn
C1 Cp,
—D((ZX ... h Bm
(Gt 5 0 (b )
=N((G 4o+ L) o (b ho) +(0,0)
dq dn
:N(;—1 + 2—" +(0,0) 0 (hum, -+ ,h1)) by lemma 3.3
1 n
C1 Cp,
=N(—+-- — + (hpm— h
(gt gt (s )
c1 Cn, 1
=N(—+-+—+h+
(d1 dy, ! ho + -+ hml_l )
1 cn | Elhi, - hipi] .
=N m T - b tion 77
(d1 4ot i + i, ,hm—l]) y proposition
aq Qg
“N(EE gy S ,
(b1 +o b +e1)
Elhy, - iy . .
If m >3 orm=3and hy # %1, M cannot be an integer since h;’s
E[h27 : .C.' ) tha—l]
have the same sign. Then by theorem 2.1, — = b—J withn = s—1 wheret =1,--- ,n,
i J
j [: jlvjl + ]-7 ,8,1,2,'” ,jl —2or J = jlajl - 1; 72a1787"' ajl + 2 and
Elhy, - hm1 aj, 1 .
= + eq for some 1 < < s. Here, n > 2. If m = 3 and
E[h27"' 7hm*1} bj1$1 ' .
E[hl, hg] hlhg +1 C; Q; .
hy = +1, th = = hy; £ 1. By th 2.1, — = — with
2 , then Elha) s 1 y theorem 2.1, Z ; wi
n = s where i = 1a » 1, j = jlajl + 17 5871727"' 7j1 -1 OI'j = j17jl -
1,---,2,1,8,---,j1+1and hy £ 1 =e;.
From equation (2),
x —d1 —dn
N(U“F*):N((i* )o(_hlv"'7_hm70)+(l17"'7lk))
Yy C1 Cn
where g = (I3, -+ ,l) and k is odd,
_dl _dn
:N((C—*- - Yo(=h1, -+ ,—hm,0)0 (g, -+ ,11)) by lemma 3.3
1 n
—d —d,
=N((— = Yo(=h1, -+, —hm,lk,---,l1)) by lemma 3.4
C1 Cn
=D((F 4+ )0 (o oy =l =11, 0))
dq dn
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&] Cn

= ((7++7)O(h13 7hWL7flk’a"' 771170)4»(070))
dq dy,
=N(SE 4 (0,00 (0, =Ly, —lis hyns+ ,hn)) by lemma 3.3
1 n
N S T IO
- (dl + + dn +( ll7 B lkah’ma ahl))
_ (6714,4,67"4, E[hla 7hM7O]E[7lla"' 77116—1] +E[h13 7hm]E[*lla"' 7flk])
dl dn E[h2a 7hm70]E[_l17"' 7_lk71] +E[h2; 7hm]E[_l1) 7_lk]
C1 Cn yE[hlv 7hmu0] _(EE[hlv ahm]
=N(= 4+ +
(dl dp, Z/E[hm ahmao] —.I‘E[hg, ahm})
E . 1| —xF .
:N(ﬂ+ ci Yy [h17 ahm 1] T [h'h ,h’m])
dl dn yE[hZ, ;hmfl] *I'E[h%’ ,hm]
by proposition ?? and lemma 3.5
:N(ﬂ+...+ﬁ+82).
V1 V¢
By the above result, if m > 3 or m = 3 and he # %1, then N(ﬁ + -4+ il +
(%1 (0
a; Q5,41 Aj; 53 | Aj;F2 yE[hla"'7hm71]_$E[h17"'ahm}
€)= N(=222 ¢ =2 oy Jit + Jit
?) (E)j bj,+1 | birs  bjx2 yElhe, o hypoa] —aEhg, - ,hm])
Elhy, - hm—1 aj, F1 .
where = + e1 for some 1 < < s.If m = 3 and
E[hQ’n.n ,h/gl_l] b%1$1 ! a 0 jl a a
ho = +1, thenN(il+...+l+62) :N(l+ﬁiﬂ+...+ﬂ+ﬂ+
U1 Ut bj, b1 bjx2  bji¥1

y(l + hl) — .%'(hl + h3 + h1h3)
+y — x(1 £ hs)

) where hy =e; F 1. O

Next, the system of tangle equations is solved when s < 2 and t > 3. If s < 2,
then the righthand side of equation (1) in theorem 5.1 is a rational link. So it can
be written as N(g).

b
Theorem 5.2. Suppose that a,b,x,y are integers. For t > 3,
0 a
N+ =N(E) (1)

21

andN(U—&—g) =N+t D te) (2)
t

U1
where zj,v;,ea are integers and 0 < z; < wv; for1 < j <t
and U is a generalized M-tangle.
if and only if t = 3,

—c1b
Uo(Gppaza
dl dlb —qa

pa—cb + Cfl) o (h,0) for all integers c¢1,dy,p

Yo Oy and (g e ™ &y
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c1 pa—c1b T

and q such that dip —qcp = 1 and 0 < ¢y < di where (—, , =
1 e LA Il N p—

Zi % 2

(&2, 22 4k, ﬁJreg— ) for some integer k where {i1, 12,43} is cyclic permutations

Vi, iy

of (1,2,3) and reversal of order.
Note that the choice of ¢y and p such that dip — qc1 = 1 has no effect on U.

Proof. If U is rational, N(U + E) is a rational link but N(Z + - + Lt ey)

is a Montesinos link/knot by the equation (2). It contradlcts So U should be a

generalized M-tangle which is not rational. Since N(U) = N (%) is rational by

% + 22) (h,0) where 0 < ¢; < d; for i = 1,2. From the proof
1 2
pa — c1b —cb

. _&a 1 ‘1
of theorem 3 in [4], U = (— + 7qa)o(h,0) and (d - —|— dl)o(h7

equation (1), U = (

0) for
di  dib—
integers c¢1,dy,p and g such that dip — gc; = 1. Note that if d1 and q are specified,

then the choice of ¢; and p such that dip — gc; = 1 has no effect on U since ;—1 +
1
pa—cib ¢ +dii n pa —c1b— (dib—qa)i ¢ +dii | (p+qi)a—(c1 +dyi)b

d1b—qa o dy d1b—qa o dq d1b—qa
and dy(p + qi) — q(c1 + dyi) =1 if and only if dip — ge; = 1 [4].

From equation (2),

X C1
NU+ —) =N((+ + h,0
( y) ((d1 dz) (h,0) + y)
C2 X
=N((—+ )+ (=)o (h,0
(G @+ (o)
x
=N+ 24
(dl dQ hl’+y)
:N(ﬁ+...+ﬁ+62)_
U1 UVt
Since t > 3, ¥ cannot be an integer. Actually, ¢t = 3 and N(Z—1 —+ 22 + &} —+
hx +y U1 [ V3
cl pa — clb T L. pa — c1b c1
=N . Similarly, for U = (5—— h,0
e2) = (d1 + dlb —I— h:c+y) imilarly, for (dlbfqa dl) (h,0),
zZ1 22 pa—cib T )
N(—+ —+ — =N—7—-+ — b t 2). Note that
(U1+U2+ +ez) (dlb—qa d1+hx+y) y equation (2). Note tha
b T ¢ pa—cib T
by th 2.1, N — 4+ ——)=N(— . Th
v heorem (dlb @ ' d hx+y) Gt v —ga T he gy TR
c1 pa—c1b T Ziy Ziy .
- = (— k — k) for s t k wh
(dl’ db—qa’ hx+y) (Uil,vi2 + v, 2+ e ) for some integer k£ where

{i1,12,13} is cyclic permutations of (1,2,3) and reversal of order by theorem 2.1.0

Next, the system of tangle equations is solved when s > 3 and ¢t < 2. If t < 2, then
the righthand side of equation (2) in theorem 5.1 is a rational link. So it can be



September 12, 2019 12:3 WSPC/INSTRUCTION FILE TangleEquations

Tangle Equations involving Montesinos Links 23

written as N(E).
v

Theorem 5.3. Suppose that x,y, z,v are integers. For s > 3,

N(U+%) :N(%+---+%:+el) (1)
and N(U + g) =N() ()

where a;,b;,e1 are integers and 0 < a; < b; for 1 <i <,

and U 1is a generalized M-tangle.

if and only if s = 3,

¢ pz—cv x pz—cv ¢ x
U= (—+4+"—7—— h,0 —= d (—————+ — h,0 —=
(d1+dlv_qz)o(’)o( y) an (dlv_qz+d1)o(7)o( y)fo,r
integers ci,d1,p and q such that dip —qey = 1 and 0 < ¢y < dy where
(%, va_ftl;;, hxai y’) = (%, %j + k, Zf + e1 — k) for some integer k where
{i1,12,13} is cyclic permutations of (1,2,3) and reversal of order and y' such that
yy'* =1 mod x.

Note that the choice of ¢1 and p such that dip — gc; = 1 has no effect on U.

ay
by

Qg . . . . . .
S bfé +e1) is a Montesinos knot. It contradicts. So U is a nonrational generalized

M—tangle.
By equation (2),

Proof. If U is rational, then N(U) is a rational link but by equation (1), N(— +

NU+E)=N@ + (Ih, -+ , 1)) where © = (Iy,--- 1) and k is odd
Yy Yy

0
=NUo(lg,---,lh) + (I)) by lemma 3.3

=N (C)

v

Since U is a nonrational generalized M-tangle, so is U o (Ig,--- ,I1). Since N(U o
C1 C2

¢ pz—cv x

where 0 < ¢; < d; for i = 1,2. From the proof of theorem 3 in [4], Uo (Ig,--- ,l1) =
div—qz dy
di  div—gz
(dl div —qz div—gqz dy )o(h,0)o(——) for integers

(g, -+, 11)) = N(E) is rational, we can write U o (I, -+ ,l1) = (=— + =) o (h,0)
v d1 dg
(C—1 M) o (h,0) and (M + il) o (h,0) for integers c;,di,p and ¢
dy  div—gqz
such that dip — ge; = 1. Thus U = (c—1 + M) o (h,0) o (=ly, -+, =) =
>o<h,o>o<—§> and U = (2220 . 2L
c1,d1,p and q satisfying the above. Note that if d; and ¢ are specified, then the
choice of ¢; and p such that dip — gc; = 1 has no effect on U.
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By equation(1),

0 c1 . pz—civ
N -)=N((—+>—F— h =y, =
U+ ) =N+ =0 o (h0) o (<o 1) +(0)
pz —
=N - gy, — 1 .
((dl dlv_qz) (h’70)+( lk? ) ll)) by emma‘33
pz — x 1£1
=N —_— h,0 —— h =1 mod
((d1 dw—QZ) (h,0) +( y’>) ey moes
pz — x
=N T —— h,0
(G + 2+ ()0 (n0)
_ (01 Pz — v x )
dy div—qz hx—1y
—N(E o e
' b, !
SincesE&Lcannot be an integer. Actually, s = 3 and N( +—+—+
hx —y' b1 by b3
C1 bz — C1v z - pz —c
= N(— . Similarly, for U = (=—— + — h,0
61) (d1 dlv_qz hx_y/) lmla‘ry’ or (dlv_qz+d1)0( ? )7

N(al + az + as +e) = N(pZ—C1’U 2! L—y) Note that by theo-

by by | by dw—qz d  h
c1v C1 X — C1v x

21, N(———— + — = N(— . Thus
rem (dlv—qz+d1+hm ’) (d1+dlv—qz+hx— ’) s
( + kK, % + e; — k) for some integer k where
11 12 13

1 pz—cv x Qiy Gy
) = (—
{i1,12,13} is cyclic permutations of (1,2,3) and reversal of order by theorem 2.1.0

di dyv—qz hx — vy b;, " b;

Example 5.4. Solve the following tangle equations where U is a generalized M-

tangle.
0 1 2 2
N(U+i)—N(§+§+§+(—3))
1 3 2
and NU+-)=N(z+ -+ =+ (-3))
2 5 3
1 2 2 2 2 1
By theorem 5.1, if m = 1, then U = (§—|—§—|—3)0(—3),(5—&—34—5)0(—3) or
2 1 2 1 3 2 1 2 2 T
S P AV NE+o424(=3) =N+2+)+ 54~
(3-1-2-1-3)0( 3). Moreover, (2—1-5-1-3-1-( 3)) ((2+3+3)+y+( 3)),
2 2 1 2 1 2
N((§+§+§)+g+(—3))0rN((§+§—|—§)—|—£+(—3)) By theorem 2.1, there
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x
is no — satisfying the above.
Y

1 2 2
Similarly, if m = 3 and h,, = 0, then by theorem 5.1, U = (= + = + =) o

2 3 3
2 2 1 2 1 2 1
(—3,h2,0),(§ 3 + 5) o(=3,h2,0) or (= + = + =) o (=3, ha,0). Moreover, N(§ +
3 2 1 2 2 x 2 2 1 x

3 2 3
5+§+(—3)) :N((§+§+§)+h2x+y+(_3))’ N((§+§+§)+m+(—3))

2 1 2
or N((§ + 3 + g) + Tt 1y + (—3)) which are impossible by theorem 2.1.
Thus m > 3 or m = 3 and h,, # 0.
1 2 2 1
(1) By theorem 5.1 (3a), U = (= +=)o(h1, -+ ,hm) or (z+=)o(hy, -+, hy)where

Bl bl _ 2 27 ;32

1"y /tm — o .

Th. ... 1 2 -3) = — =-24+ ——7—Th lies that =

Elhg, - h] 3 + (-3) 3 + _2+%1 is implies that m = 3
1 3 2 1

and (hy,h2,hs) = (—2,—2,—1). Moreover, N(= + £ + 3 + (-3) = N(§ +

[\

2 zE[-2,-2]+yE[-2,-2,—1] 1 2 b — Ty
= = N(=z+ -+ —). By th 2.1
IR 5 ;) By s s 3+ 3+ pggy) By theorem 2.1,
-7 —12 1 2
% = 2—3 — —= which implies g = —1.Thus U = (5 +3)0(~2,-2,-1),
2 1
(5 +3)°(-2-2-1) and % =1
2 -3 -3 -2
(2) By theorem 5.1 (3b), U = (T * 7) o(=hy, -+, —hm,0) or (7 * T) o
Elhi, - hmot] 2 _7 i
—hy,ee —hp,0) where o Rmoll 2y 0 g L
(Fha,-o ) e ] 3 T Y T 3 T3
(=3,-2). Thus (hm—1,---,h1) = (—3,—2). This implies that m = 3 and
1 3 2 1 2
(h1,ha, hg) = (—=2,-3, hs) for hy < 0. Moreover, N(§ tetgt (=3)) = N(§ +3
yE[h1, ha] — xE[hy, ha, hs] 1 2 Ty—ax(Ths —2)
=N(=+ = . By th 2.1
T B — 2Bl by - NG T T Sy T — gy BY theorem 2.1,
Ty — x(7Thg — 2) 3 —12 x 1
3y —x(1—3hs) 5 5 en = s - (bhe =30 or
2 - “3 o
(=1, hy —1,0). Hence, U — (T*;)O(Q,& —hy,0), (73*T)o(2,3, —h3,0) and
T 1
" = T 2 = (1,h3 —3,0) or (—1,h3 — 1,0) for hy <O0.

Example 5.5. Solve

N(U+3)=N(})
and N(U+£):N(1 ,+g_3)
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By theorem 5.2, U = (2 ;51—7_5;;)0(}1,0), (57)51_7_5;;4—2) (h,0) and N(d1+
221_—5;:] ha:::- y) = N(% + g + g — 3) for integers ¢1,d;,p and ¢ such that
dip—qcy =1 and 0 < ¢; < dy. By theorem 2.1, 21 ; 2 %

(1) If d—l 5 then ;Z;_E);; = 175):72 = % +kor 5 + k for some integer k where

2p —q = 1. Solv1ng10—7q::t3and2p7—q§1g:i))ves5;t]7€:q:1andk20.
p=o _ 3+ and 2p —q = 1. Thus

However, there is no integers p, ¢ such that

10-7¢ 5
1 2 2 1 T 3 —12

=Tz 3T 5 =—-—-—3—k=—.Thus
U (2+3)O(h70) and (3+2)O(h,0) 5 3 k 5 us
z —12

y 5+12h

3 -5 7 2 1

()If;—1 5 hen 551_;; 2§ 74 §+k r§+k for some integer k where

op — 3q = 1. There is no such p and gq.

-1 1
(3) It & d—l =3 then ;Zl _5;(11 = I}; — 72 =3 +k or g—i— k for some integer k where

3p — 2qg = 1. There is no such p and gq.

N

1 2
Hence, the solutions for this system of tangle equations are U = (§ + g) o (h,0)
2 1 —12
and (g + 5) o (h,0) and g B ESTT (=2,—2,-2,—h,0) for any integer h.
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