1.) Give that the solution to $\mathbf{x}^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right] \mathbf{x} \quad$ is $\quad \mathbf{x}=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-2 \\ 3\end{array}\right] e^{-2 t}$
$[4]$ a.) Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$ in the
t, x_{1}-plane

t, x_{2}-plane

$\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ in the
t, x_{1}-plane

[2] b.) Graph the solution to the IVP
t, x_{2}-plane

x_{1}, x_{2}-plane

$[2]$ c.) The equilibrium solution for this system of equations is $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=[]$.
[2] d.) Determine the stability and type of this equilibrium solution:
[1]
e.) $\frac{d x_{2}}{d x_{1}}=$ \qquad

extra graph: use only if you wish to
[9] f.) Graph several trajectories.

graph for part f
1.) Give that the solution to $\mathbf{x}^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right] \mathbf{x}$ is $\left[\begin{array}{l}x \\ \frac{1}{2}\end{array}\right]=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-2 \\ 3\end{array}\right] e^{-2 t}$
[4] a.) Graph the solution to the IVP
\qquad

$$
\begin{aligned}
& =-2 e^{-2 t} \\
& \frac{x_{2}}{x_{1}}=\frac{3 e^{-26}}{-2 t} e^{t, x_{2} \text {-plane }} x_{2}=
\end{aligned}
$$

$$
3 e^{-2 t}
$$

[2] b.) Graph the solution to the IVP

$$
t, x_{1} \text {-plane } X_{I}=0
$$

$\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ in the $\left(c_{1}=0\right.$,

$$
c_{2}=\infty
$$

$$
\begin{aligned}
& X_{1}(t)= \\
& x_{2}(t)= \\
& \text {-plane } \\
& \square \# \# \\
& \square
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}(t) \\
& \text { shane }
\end{aligned}=\mathbb{C}
$$

$$
x_{1}(t)=0
$$

$$
t, x_{2} \text {-plane } X_{2}=0 \quad x_{1}, x_{2} \text {-plane }
$$

[2] c.) The equilibrium solution for this system of equations is $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. $\vec{X}^{\prime}=A \vec{X}$ and type
[2] d.) Determine the stability of the equilibrium solution:
unstable saddle

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
d x_{1} / d t \\
d x_{2} / d t
\end{array}\right]} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+2 x_{2} \\
3 x_{1}+0
\end{array}\right] \\
\frac{d x_{1}}{d t} & =x_{1}+2 x_{2} \\
\frac{d x_{2}}{d t} & =3 x_{1}
\end{array}\right\} \frac{d x_{2} / d t}{d x_{1} / d t}=\frac{d x_{2}}{d t} x^{2} \frac{d x_{1}}{d x_{1}} .
$$

1.) Give that the solution to $\mathrm{x}^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right] \mathrm{x}$ is $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{3 t}+c_{1}\left[\begin{array}{c}-2 \\ 3\end{array}\right] e^{-2 t}$

$$
c_{1}=0 d c_{2}=1 \Rightarrow
$$

$$
x_{2}=3 e^{-2 t}
$$

[4] a.) Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$ in the

[2] b.) Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ in the $\left(c_{1}=0 \lambda c_{2}=0\right)$

$$
\begin{aligned}
& x_{1}(t)=0 \\
& x_{2}(t)=0 \\
& \vec{X}=0 \\
& t \text { is a } \\
& \text { constant } \\
& \text { soph }
\end{aligned}
$$

[2] c.) The equilibrium solution for this system of equations is $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \cdot \longleftarrow \vec{X}^{\prime}=A \vec{X}$ and type
[2] d.) Determine the stability of the equilibrium solution:
unstable

extra graph: use only if you wish to
[9] f.) Graph several trajectories

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
d x_{1} / d / \\
d x_{2} / d t
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
d x_{1} d d f \\
d x_{2} / d t
\end{array}\right]=\left[\begin{array}{l}
x_{1}+2 x_{2} \\
3 x_{1}+0 x_{2}
\end{array}\right]} \\
& \frac{d x_{1}}{d t}=x_{1}+2 x_{2}-\frac{d x_{2}}{\frac{d x_{2}}{d t}}=3 x_{1} \\
& \frac{d x_{1}}{d t} \\
& \frac{d x_{2}}{d t} \cdot \frac{d t}{d x_{1}} \\
& \frac{3 x_{1}}{x_{1}+2 x_{2}}
\end{aligned}
$$

