$1.3 \# 19:$
Show. $u,(x, y)=\cos x \cosh y$

$$
u_{2}(x, y)=\ln \left(x^{2}+y^{2^{2}}\right)
$$

are sol'ns to $P D E: u_{x x}+u_{y y}=0$
Recall $u_{x x}=\frac{\partial}{\partial x} \frac{\partial}{\partial x}(u) \bumpeq$ Treat y as a constant

For u_{2}

$$
\begin{aligned}
& \text { For } u_{2} \\
& \frac{\partial^{2}}{\partial x^{2}}\left(\ln \left(x^{2}+y^{2}\right)\right)=\frac{\partial}{\partial x}\left(\frac{1}{x^{2}+y^{2}} \quad \partial\left(x^{2}+y^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left[-\left(x^{2}+y^{2}\right)^{-2}(2 x)\right](2 x)+\left(x^{2}+y^{2}\right)^{-1}(2)\right] \text { or prode of } \\
& \begin{array}{l}
=\frac{(-2 x)(2 x)+2\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \sqrt{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \quad \begin{array}{l}
\frac{2}{\frac{2}{2 x}=\frac{d}{d x} \text { whire }} \\
y \text { is a } \\
\text { constant }
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& u_{x x}=\frac{2 y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& u_{y y}=\frac{\partial}{\partial y} \frac{\partial}{\partial y}\left[\ln \left(x^{2}+y^{2}\right)\right]=\frac{2 x^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Verrfy that $a_{x x}+u_{y y}=0$ when $a=\ln \left(x^{2}+y^{2}\right)$ To show something is a joth, plog in (roto $\angle H S$)

$$
\begin{aligned}
\frac{2 y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} & +\frac{2 x^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}=\frac{2 y^{2}-2 x^{2}+2 x^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=0 \text { is a solh to }
$$

For u_{1}, also plug in to, check ansupa

$$
\Rightarrow a_{x x}+a_{y y}=0
$$

Find $u_{y y}$ \& $u_{y y}$

$$
\begin{aligned}
& \text { Find } u_{y y} \text { \& } u_{y y} \\
& u_{1}(x, y)=(\cos x)(\cosh y) \\
& \frac{\partial}{\partial x} \frac{\partial}{\partial x}(u,(x, y))=\underbrace{\cosh y}_{\text {constant }} \cdot\left(\frac{\partial^{2}}{\partial x^{2}} \cos x\right)=\text { etc } \\
& \left.\frac{\partial^{2}}{\partial y^{2}}((\cos x) \cosh y)\right)=\cos x\left[\frac{\partial^{2}}{\partial y^{2}}(\cos h y)\right]
\end{aligned}
$$

Generic question regarding constants:

$$
\left.\left\{\begin{array}{l}
f(x)+C \\
f(x)-C
\end{array}\right\} \begin{array}{l}
\text { sane thing (if sloppy)} \\
c \text { can swallow } \\
\text { negative sign } \\
\text { Both are } \\
\text { acceptable } \\
\text { answers }
\end{array}\right\} \begin{aligned}
& \text { recall con use } c \text { to } \\
& \text { mean move than } 1 \text { thing }
\end{aligned}
$$

$1.210 \quad \frac{d y}{d t}=-y+5 \quad y(0)=y_{0}$
(1) Find equil,briumsork if any

$$
\begin{aligned}
& \text { Solve } \frac{d y}{d t}=-y+S \text { using separate } \\
& \int \frac{d y}{\text { variables }} \\
& \qquad \int \ln =\int d t \\
& +\ln 1-y+5 \mid=-t+C
\end{aligned}
$$

etc.

