Quiz 2 Feb 19, 2016

[10] 1.) Given that $y(t) = \frac{1}{t}$ and $y(t) = t^{\frac{3}{2}}$ are solutions to $2t^2y'' + ty' - 3y = 0$, state the general solution to this 2nd order homogeneous linear differential equation:

Given two linearly independent solutions to a 2nd order homogeneous linear differential equation, one can create the general solution by taking their linear combination. Thus the answer is

$$y(t) = \frac{c_1}{t} + c_2 t^{\frac{3}{2}}$$

In other words, $\{\frac{1}{t}, t^{\frac{3}{2}}\}$ forms a basis for the solution set (since every solution can be written uniquely as a linear combination of these two functions).

[10] 2.) Solve: $y' = y\cos(x)$. Separate variables: $\frac{dy}{dx} = y\cos(x)$. $\frac{dy}{y} = \cos(x)dx$ $\int \frac{dy}{y} = \int \cos(x)dx$ $ln|y| = \sin(x) + C$ $ln|y| = \sin(x) + C$ $|y| = e^{\sin(x) + C} = e^{C}e^{\sin(x)}$ Thus $y = Ce^{\sin(x)}$ Answer: $y = Ce^{\sin(x)}$