[20] 1.) Solve $y^{\prime \prime}-6 y^{\prime}+9 y=0, y(0)=2, y^{\prime}(0)=4$.
$r^{2}-6 r+9=(r-3)^{2}=0$. Thus $r=3$
General solution: $y=c_{1} e^{3 t}+c_{2} t e^{3 t}$
$y^{\prime}=3 c_{1} e^{3 t}+c_{2}\left(e^{3 t}+3 t e^{3 t}\right)$
$y(0)=2: \quad 2=c_{1}$
$y^{\prime}(0)=4: \quad 4=3 c_{1}+c_{2}$. Thus $c_{2}=4-6=-2$.
Answer: $\quad y=2 e^{3 t}-2 t e^{3 t}$
2.) Circle T for true and F for false.
[4] 2a.) The equation $\ln (t) y^{\prime}=\frac{t}{t+1}-y\left(\sin t^{2}\right)$ is a linear differential equation.
T
[4] 2b.) The equation $y^{\prime}+y=y^{2}$ is a linear differential equation.
[4] 2c.) Suppose $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are solutions to $a y^{\prime \prime}+b y^{\prime}+c y=0$. If $y=h(t)$ is also a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$, then there exists constants c_{1} and c_{2} such that $h(t)=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$.
[4] 2d.) Suppose $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are linearly independent solutions to $a y^{\prime \prime}+$ $b y^{\prime}+c y=0$. If $y=h(t)$ is also a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$, then there exists constants c_{1} and c_{2} such that $h(t)=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$.

T
[4] 3.) By giving a specific counter-example, prove that $y=\ln (x)$ is not a linear function.
Proof 1: $\ln (2)=\ln (1+1) \neq 0=\ln (1)+\ln (1)$.
Proof 2: $\ln (e)+\ln (1)=1+0=1$. But $\ln (e+1)>\ln (e)=1$ since $y=\ln (x)$ is an increasing function (since $[\ln (x)]^{\prime}=\frac{1}{x}>0$ for $x>0$).

Proof 3: $\ln (e)+\ln (e)=1+1=2$. But $\ln (e+e)=\ln (2 e)=\ln (2)+\ln (e)=\ln (2)+1$.
$\ln (2)<\ln (e)=1$. Thus $2 \neq \ln (2)+1$. Hence $\ln (e)+\ln (e) \neq \ln (2 e)$ and thus $y=\ln (x)$ is not a linear function.

Proof 4: $e \cdot \ln (1)=e \cdot 0=0 \neq 1=\ln (e)=\ln (e \cdot 1)$. In other words, if $f(x)=\ln (x)$, $f(c x) \neq c f(x)$ for constant $c=e$ and $x=1$.
[20] 4.)
4a.) Circle the differential equation whose direction field is given above.

$$
\text { v.) } y^{\prime}=\frac{y}{y+2}
$$

4b.) Draw the solution to the differential equation whose direction field is given above that satisfies the initial condition $y(1)=-3$

4c.) Does the differential equation whose direction field is given above have any equilibrium solutions? If so, state whether they are stable, semi-stable or unstable.

The constant solution $y=0$ is an unstable equilibrium solution.
[20] 5.) Solve: $y^{\prime}=e^{4 t}-\frac{y}{t}$
Linear, not separable: $y^{\prime}+\frac{y}{t}=e^{4 t}$
Let $u(t)=e^{\int \frac{d t}{t}}=e^{l n|t|+C}=C|t|$. Let $u(t)=t$
$t y^{\prime}+y=t e^{4 t}$
$(t y)^{\prime}=t e^{4 t}$
$\int(t y)^{\prime}=\int t e^{4 t} d t$.
Let $u=t \quad d v=e^{4 t}$
$d u=d t \quad v=\frac{e^{4 t}}{4}$
$t y=\frac{t e^{4 t}}{4}-\int \frac{e^{4 t}}{4} d t=\frac{t e^{4 t}}{4}-\frac{e^{4 t}}{16}+C$
Thus $y=\frac{e^{4 t}}{4}-\frac{e^{4 t}}{16 t}+\frac{C}{t}$

$$
\text { Answer: } \quad y=\frac{e^{4 t}}{4}-\frac{e^{4 t}}{16 t}+\frac{C}{t}
$$

[20] 6.) Choose one of the following 2 problems. If you do not choose your best problem, I will substitute the other problem, but with a 2 point penalty (if it improves your grade). Circle the letter corresponding to your chosen problem: A B

6A.) Show that $\phi(t)=\sum_{k=2}^{\infty} \frac{3(-1)^{k} t^{k}}{k!}$ converges for all t and show that $\phi(t)=\sum_{k=2}^{\infty} \frac{3(-1)^{k} t^{k}}{k!}$ is a solution to $y^{\prime}=3 t-y$.

Proof: $\quad \lim _{k \rightarrow \infty} \frac{\frac{3(-1)^{k+1} t^{k+1}}{(k+1)!}}{\frac{3(-1)^{k} t^{k}}{k!}}=\lim _{k \rightarrow \infty} \frac{t}{k+1}=0<1$ for all t.
Thus $\phi(t)=\sum_{k=2}^{\infty} \frac{3(-1)^{k} t^{k}}{k!}$ converges for all t by the ratio test.
To show that $y=\phi(t)$ is a solution to $y^{\prime}=3 t-y$, we plug it in.

$$
\begin{aligned}
& \phi^{\prime}=\sum_{k=2}^{\infty} \frac{3(-1)^{k}(k) t^{k-1}}{k!}=\sum_{k=2}^{\infty} \frac{3(-1)^{k} t^{k-1}}{(k-1)!} \\
& \begin{aligned}
3 t-\phi=3 t-\sum_{k=2}^{\infty} \frac{3(-1)^{k} t^{k}}{k!}=3 t-\sum_{k=3}^{\infty} \frac{3(-1)^{k-1} t^{k-1}}{(k-1)!} \\
\begin{aligned}
\phi^{\prime}= & \sum_{k=2}^{\infty} \frac{3(-1)^{k}(k) t^{k-1}}{k!}=\sum_{k=2}^{\infty} \frac{3(-1)^{k} t^{k-1}}{(k-1)!}=\sum_{k=2}^{2} \frac{3(-1)^{k} t^{k-1}}{(k-1)!}+\sum_{k=3}^{\infty} \frac{3(-1)^{k} t^{k-1}}{(k-1)!} \\
& =3 t-\sum_{k=3}^{\infty} \frac{3(-1)^{k-1} t^{k-1}}{(k-1)!}=3 t-\phi
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Thus $\phi(t)=\sum_{k=2}^{\infty} \frac{3(-1)^{k} t^{k}}{k!}$ is a solution to $y^{\prime}=3 t-y$.

6B.) Show by induction that for Picard's iteration method, $\phi_{n}(t)=\sum_{k=1}^{n} \frac{3(-1)^{k+1} t^{k+1}}{(k+1)!}$ approximates the solution to the initial value problem, $y^{\prime}=3 t-y, y(0)=0$ where $\phi_{1}(t)=\frac{3 t^{2}}{2}$. You may use the proof outline below or write it from scratch.

Proof by induction on n.
For $n=1, \quad \sum_{k=1}^{1} \frac{3(-1)^{k+1} t^{k+1}}{(k+1)!}=\frac{3(-1)^{1+1} t^{1+1}}{(1+1)!}=\frac{3 t^{2}}{2!}=\phi_{1}$

Suppose for $n=j-1, \quad \phi_{j-1}(t)=\sum_{k=1}^{j-1} \frac{3(-1)^{k+1} t^{k+1}}{(k+1)!}$

Then by Picard's iteration method, $\phi_{j}=\int_{0}^{t} f\left(s, \phi_{j-1}(s)\right) d s$ where $f(t, y)=3 t-y$.
Thus $\phi_{j}=\int_{0}^{t}\left(3 s-\phi_{j-1}(s)\right) d s=\int_{0}^{t}\left(3 s-\sum_{k=1}^{j-1} \frac{3(-1)^{k+1} s^{k+1}}{(k+1)!}\right) d s$

$$
=\int_{0}^{t} 3 s d s-\sum_{k=1}^{j-1} \int_{0}^{t} \frac{3(-1)^{k+1} s^{k+1}}{(k+1)!} d s
$$

$$
=\left.\frac{3}{2} s^{2}\right|_{0} ^{t}-\left.\sum_{k=1}^{j-1} \frac{3(-1)^{k+1} s^{k+2}}{(k+2)!}\right|_{0} ^{t}
$$

$$
=\frac{3}{2} t^{2}-0-\left(\sum_{k=1}^{j-1} \frac{3(-1)^{k+1} t^{k+2}}{(k+2)!}-0\right)
$$

$$
=\frac{3}{2} t^{2}+\sum_{k=1}^{j-1} \frac{3(-1)^{k+2} t^{k+2}}{(k+2)!}
$$

$$
=\sum_{k=1}^{1} \frac{3(-1)^{k+1} t^{k+1}}{(k+1)!}+\sum_{k=2}^{j} \frac{3(-1)^{k+1} t^{k+1}}{(k+1)!}
$$

$$
=\sum_{k=1}^{j} \frac{3(-1)^{k+1} t^{k+1}}{(k+1)!}
$$

