\magnification 1300 \vsize 9.6truein %%\voffset 0.3truein \hsize 6.9 truein \nopagenumbers \parskip=10pt \parindent= 0pt \def\u{\vskip 3.3in} \def\v{\vskip 2.2in} \def\w{\vskip 29pt} Math 100 Differential Equations Exam \#1 \vskip -10pt February 27, 2013 \hfill SHOW ALL WORK ~~~ [10]~ 1.) By giving a specific example, prove that $f: R \rightarrow R, ~f(x) = e^x$ is not onto. Answer 1: We know that $e^x > 0$ for all $x$. Thus there is no $x$ such that $f(x) = e^x = -1$. Hence -1 is not in the image of $f$. Answer 2: Suppose $f(x) = -1$. Then $e^x = -1$. But then $x = ln(-1)$. But $ln(-1)$ is not defined. Thus -1 is not in the image of $f$. \vfill 2.) Circle T for true and F for false. Note that the answer to 2a is true. [3]~ 2a.) In more advanced math classes, you may be required to provide many more details when proving a function is onto. \rightline{T~~~~~~~~~~~} \w [4]~ 2b.) Suppose $\phi$ is a solution to the equation, $y' + p(t)y = g(t)$, then $2\phi$ must also be a solution to $y' + p(t)y = g(t)$. \rightline{~~~~~~~~~~~F} \w [4]~ 2c.) Suppose $\phi$ is a solution to the equation, $y' + p(t)y^2 = 0$, then $2\phi$ must also be a solution to $y' + p(t)y^2 = 0$. \rightline{~~~~~~~~~~~F} \w [4]~ 2d.) Suppose $\phi$ is a solution to the equation, $y' + p(t)y = 0$, then $2\phi$ must also be a solution to $y' + p(t)y = 0$. \rightline{T~~~~~~~~~~~} \eject [15]~ 3.) Draw the direction field for $y' = {1 \over 2}y + 1$. Determine if there are any equilibrium solutions. If so, determine if the equilibrium solution(s) are stable, unstable or semi-stable. Equilibrium solution = constant solution. Thus $y' = 0$. $ {1 \over 2}y + 1 = 0$ implies $ {1 \over 2}y = -1$. Thus $y = -2$ is the equilibrium solution. \eject [15]~ 4.) Solve the following initial value problem: $y'y = t + 3ty^2$, $y(0) = -2$ $y'y = t + 3ty^2$ ${dy \over dt} y = t(1 + 3y^2)$ ${y dy \over 1 + 3y^2} = tdt$ $\int {y dy \over 1 + 3y^2} = \int tdt$ ${1 \over 6} \int {6y dy \over 1 + 3y^2} = \int tdt$ ${1 \over 6} ln|1 + 3y^2| = {1 \over 2} t^2 + C$ $ ln|1 + 3y^2| = 3 t^2 + C$ $ e^{ln|1 + 3y^2|} = e^{3 t^2 + C}$ $|1 + 3y^2| = e^{3 t^2}e^C$ $1 + 3y^2 = \pm e^C e^{3 t^2}$ $1 + 3y^2 = Ce^{3 t^2}$ $ 3y^2 = Ce^{3 t^2} - 1$ $ y^2 = {Ce^{3 t^2} - 1 \over 3}$ $ y = \pm \sqrt{{Ce^{3 t^2} - 1 \over 3}}$ $y(0) = -2$: ~~ $ -2 = - \sqrt{{Ce^{0} - 1 \over 3}} = - \sqrt{{C - 1 \over 3}}$ $ 4 = {{C - 1 \over 3}}$ implies $12 = C - 1$ implies $C = 13$. \vfill \centerline{Answer 4.) $\underline{~~ y = - \sqrt{{13e^{3 t^2} - 1 \over 3}}~~}$} \eject \eject 5.) Find the general solutions for the following three differential equations. [15]~ 5A.) $2y'' - 3y' + 5y = 0$ $y = e^{rt}$. Then $y' = re^{rt}$ and $y'' = r^2e^{rt}$. $2r^2e^{rt} - 3re^{rt} + 5e^{rt} = 0$ implies $2r^2 - 3r + 5 = 0$ $2r^2 - 3r + 5 = 0$ implies $r = {3 \pm \sqrt{9 - 4(2)(5)} \over 4} = {3 \pm \sqrt{9 - 40} \over 4} = {3 \pm \sqrt{-31} \over 4} = {3 \pm \sqrt{-31} \over 4} = {3\over 4} \pm i{\sqrt{31} \over 4}$ \vfill \vfill \centerline{Answer 5A.) $\underline{~~ y = c_1 e^{3t \over 4}cos({\sqrt{31} \over 4}~t) + c_2 e^{3t \over 4}sin({\sqrt{31} \over 4}~t) ~~}$} \vfill \vfill [15]~ 5B.) $y'' + 6y' + 9y = 0$ $r^2 + 6r + 9 = 0$ $(r + 3)^2 = 0$ implies $r = -3$ \vfill \vfill \centerline{Answer 5B) $\underline{~~y = c_1 e^{-3t} + c_2 te^{-3t}~~}$} \vfill \vfill [15]~ 5C.) $3y'' (y')^2 = 1$ Let $v y'$. Then $v' = y''$. $3v' (v)^2 = 1$ implies $3{dv \over dt} (v)^2 = 1$ $3{dv} (v)^2 = dt$ $\int3 (v)^2dv = \int dt$ $v^3 = t + C_1$. Thus $v = (t + C_1)^{1 \over 3}$ ${dy \over dt} = (t + C_1)^{1 \over 3}$ ${dy} = (t + C_1)^{1 \over 3}dt$ $\int {dy} = \int (t + C_1)^{1 \over 3}dt$ $y = {3 \over 4}(t + C_1)^{4 \over 3} + C_2$ \vfill \vfill \centerline{Answer 5C.) $\underline{~~y = {3 \over 4}(t + C_1)^{4 \over 3} + C_2~~}$} \eject \end