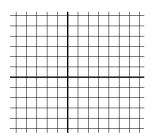

Quiz 4 SHOW ALL WORK Nov 9, 2018

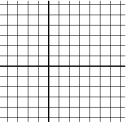
[15] 1.) Solve ty' + 4y = t

1.) Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -2 \\ 3 \end{bmatrix} e^{-2t}$

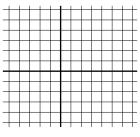


							Γ
					I —	-	Ľ

 t, x_1 -plane

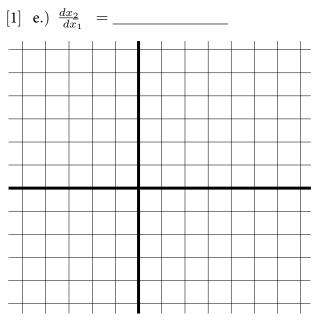

[2] b.) Graph the solution to the IVP

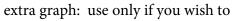
 t, x_1 -plane

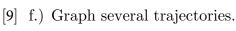


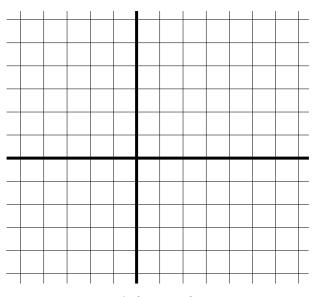
 $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

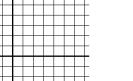
 t, x_2 -plane








c.) The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$. [2]


[2] d.) Determine the stability and type of this equilibrium solution:

