Arcsin

https://www.math.net/arcsin

https://www.symbolab.com/

Arcsine, written as arcsin or \sin^{-1} (not to be confused with $\frac{1}{sin(x)}$), is the inverse $\underline{\text{sine}}$ function. Sine only has an inverse on a restricted domain, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. In the figure below, the portion of the graph highlighted in red shows the portion of the graph of $\sin(x)$ that has an inverse.

25

Arcsin

Arcsine, written as arcsin or \sin^{-1} (not to be confused with $\frac{1}{sin(x)}$), is the inverse \underline{sine} function. Sine only has an inverse on a restricted domain, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. In the figure below, the portion of the graph highlighted in red shows the portion of the graph of $\sin(x)$ that has an inverse.

If sin(x) = z, then

 $x = \arcsin(z) + 2\pi k$ or $x = (\pi - \arcsin(z)) + 2\pi k$

Note: you have sin(ay), not sin(x).

 $= (\pi - \pi/6) + 2\pi k = (\pi - \arcsin(1/2)) + 2\pi k$

26