A very elementary introduction to proofs

Part 2

Example: Prove a function is not 1:1

By Dr. Isabel Darcy, Dept of Mathematics and AMCS, University of Iowa

Some notation:

$$\forall$$
 = for all

$$\exists$$
 = there exists

TFAE =The following are equivalent

 $[p \Rightarrow q]$ is equivalent to $\forall p, q \text{ holds}$].

That is, for everything satisfying the hypothesis p, the conclusion q must hold.

$$f:A \to B \text{ is 1:1 iff}$$

$$f(x_1) = f(x_2) \text{ implies}(x_1 = x_2.)$$

 $f:A\to B$ is 1:1 iff

 $\forall x_1 \text{ and } \forall x_2 \text{ such that } f(x_1) = f(x_2),$ we have $x_1 = x_2.$

How do we prove a function is **NOT** 1:1

A statement is **false** if the hypothesis holds, but the conclusion need not hold.

TFAE (The following are equivalent):

Hypothesis does not implies conclusion

 \underline{p} does not implyq.

$$p \not\Rightarrow q$$
.

It is not true that $\forall p, q \text{ holds.}$

 $\exists p$ such that q does not hold.

That is there exists a specific case where the hypothesis holds, but the conclusion does not hold.

 $\sim [p \Rightarrow q]$ is equivalent to $\sim [\forall p, q \text{ holds}]$.

Thus if $p \Rightarrow q$ is false,

then it is not true that $[\forall p, q \text{ holds}]$.

That is, $\exists p$ such that q does not hold.

To prove that a statement is false:

Find an example where the hypothesis holds, but the conclusion does not hold.

f:A o B is 1:1 iff $\forall x_1$ and $\forall x_2$ such that $f(x_1)=f(x_2)$, we

we have $x_1 = x_2$.

Ex: To prove a function is not 1:1, find specific x_1, x_2 such that $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.

Ex: To prove a function is not 1:1, find specific

$$x_1, x_2$$
 such that $f(x_1) = f(x_2)$, but $x_1 \neq x_2$.

Ex:
$$f(\mathbb{R}) \to \mathbb{R}$$
, $f(x) = x^2$ is not 1:1

Proof:

$$f(1) = 1^2 = 1 = (-1)^2 = f(-1)$$
, but $1 \neq -1$

$$\frac{1}{(-x)^2} = x^2$$
Does there exist x

$$st - x \neq x$$

Contrapositive of
$$[p) \Longrightarrow [q]$$
 is $[\sim q \Longrightarrow \sim p]$.

Example: The contrapositive of

$$f(x_1) = f(x_2)$$
 implies $x_1 = x_2$.) is $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$.

Example: The contrapositive of

$$ln(x_1) = ln(x_2)$$
 implies $x_1 = x_2$. is $x_1 \neq x_2$ implies $ln(x_1) \neq ln(x_2)$.

The contrapositive of a theorem is true:

If $p\Rightarrow q$ is true, then its contrapostive $p \Rightarrow q \Rightarrow p$ is also true.

If the conclusion q does not hold, then the hypothesis p cannot hold.

If $x_1 \neq x_2$ then $ln(x_1) \neq ln(x_2)$, since f(x) = ln(x) is 1:1.

Sidenote: The *converse* of $[p \implies q]$ is $[q \implies p]$.

The converse of a theorem need not be true.

That is $p \Rightarrow q$ does not imply $q \Rightarrow p$.

TFAE:

- ► $f: A \to B$ is 1:1.
- $f(x_1) = f(x_2) \text{ implies } x_1 = x_2.$
- $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$.
- $x_1 \neq x_2, f(x_1) \neq f(x_2).$

$$f:A \rightarrow B \text{ is NOT 1:1 iff} \exists \exists \text{ Find } x_1 \neq x_2$$

$$\exists x_1 \neq x_2 \text{ such that } f(x_1) = f(x_2).$$