A Quick Review of

Linear Algebra

(linear combination, linear independence, span, basis)

Partial Fractions

for

Differential Equations

By Dr. Isabel Darcy, Dept of Mathematics and AMCS, University of Iowa

LINEAR COMBINATION

 \mathbf{p} is a linear combination of $\{\mathbf{b_1}, \mathbf{b_2}, \cdots, \mathbf{b_n}\}$ iff there exists c_i such that

$$\mathbf{p} = c_1 \mathbf{b_1} + c_2 \mathbf{b_2} + \dots + c_n \mathbf{b_n}$$

Example 1:

Let
$$\mathbf{b_1} = (1, 0, 0)$$
, $\mathbf{b_2} = (0, 1, 0)$, $\mathbf{b_3} = (0, 0, 1)$.

(1,2,3) is linear combination of

$$\{(1,0,0),(0,1,0),(\underline{0,0,1})\}$$

since
$$(1,2,3) = 1((1,0,0) + 2(0,1,0) + 3(0,0,1)$$

LINEAR COMBINATION

 \mathbf{p} is a linear combination of $\{\mathbf{b_1}, \mathbf{b_2}, \cdots, \mathbf{b_n}\}$ iff there exists c_i such that

$$\mathbf{p} = c_1 \mathbf{b_1} + c_2 \mathbf{b_2} + \dots + c_n \mathbf{b_n}$$

Example 2: Let $\mathbf{b_1} = 1$, $\mathbf{b_2} = t$, $\mathbf{b_3} = t^2$

Then $1+2t+3t^2$ is a linear combination of $\{1,t,t^2\}$

Sidenote: (1,2,3) can be used to represent the polynomial $1+2t+3t^2$.

Sidenote = we won't need this for this class.

EXISTENCE

 \mathbf{p} is in $span\{\mathbf{b_1}, \mathbf{b_2}, \cdots, \mathbf{b_n}\}$ iff there **exists** c_i such that

$$\mathbf{p} = \underline{c_1 \mathbf{b_1} + c_2 \mathbf{b_2} + \dots + c_n \mathbf{b_n}}$$

Example: $\underline{span\{1,t,t^2\}} = \underline{polynomials}$ of degree at most 2.

A polynomial p(t) is in the span of $\{1, t, t^2\}$ if and only if there **exists** a solution for a, b, c to the equation

$$p(t) = \underline{a} + \underline{b}t + \underline{c}t^2 \qquad \text{one soln}$$

EXISTENCE one soll

Example 1: $2+t^3$ is not in the span of $\{1,t,t^2\}$ since there does not exist a, b, c such that

$$2+t^3 = \underline{a+bt+ct^2}$$

Example 2: $1 + 2t + 3t^2$ is in the span of $\{1, t, t^2\}$ since there exists a, b, c such that

$$1 + 2t + 3t^2 = a + bt + ct^2$$

In particular, a = 1, b = 2, c = 3 is a solution.

UNIQUENESS

at most.
one soln

$$\mathbf{b_1}, ..., \mathbf{b_n}$$
 are linearly independent iff $c_1\mathbf{b_1} + c_2\mathbf{b_2} + ... + c_n\mathbf{b_n} = 0$ $c_1 = ... = c_n = 0$

or equivalently,

$$\mathbf{b_1},...,\mathbf{b_n}$$
 are linearly independent iff $c_1\mathbf{b_1}+c_2\mathbf{b_2}+...+c_n\mathbf{b_n}=\underline{d_1\mathbf{b_1}}+\underline{d_2\mathbf{b_2}}+...+\underline{d_p\mathbf{b_n}}$ $\Longrightarrow (c_1=d_1)(c_2=d_2)...=c_n=d_n.$

In other words, if a solution exists for the following equation, then the solution is **unique**:

$$\mathbf{p} = c_1 \mathbf{b_1} + c_2 \mathbf{b_2} + \dots + c_n \mathbf{b_n}$$
 (expresentive)

UNIQUENESS

Example 1:

$$\mathbf{b_1} = (1, 0, 0), \ \mathbf{b_2} = (0, 1, 0), \ \mathbf{b_3} = (0, 0, 1).$$

$$(1,2,3) \neq (1,2,4).$$

If (a, b, c) = (1, 2, 3), then a = 1, b = 2, c = 3.

Example 2: $\mathbf{b_1} = 1$, $\mathbf{b_2} = t$, $\mathbf{b_3} = t^2$.

$$1 + 2t + 3t^2 \neq 1 + 2t + 4t^2.$$

If $\underline{a} + \underline{b}t + \underline{c}t^2 = 1 + 2t + 3t^2$, then a = 1, b = 2, c = 3.

BASIS

 $\{{f b_1},{f b_2},\cdots,{f b_n}\}$ is a basis for the vector space V if

- 1.) $span\{\mathbf{b_1}, \mathbf{b_2}, \cdots, \mathbf{b_n}\} = V$ and
- 2.) $\{\mathbf{b_1}, \mathbf{b_2}, \cdots, \mathbf{b_n}\}$ is a linearly independent set.

In other words if $p \in V$, then there exists solution for c_i for the following equation and that solution is unique:

$$\mathbf{p} = \underline{c_1}\mathbf{b_1} + \underline{c_2}\mathbf{b_2} + \dots + \underline{c_n}\mathbf{b_n}$$

Example 1: $\{(1,0,0),(0,1,0),(0,0,1)\}$ is a basis for \mathbb{R}^3 .

Example 2: $\{1, t, t^2\}$ = is a basis for the set of polynomials of degree at most 2.

Application: Partial Fractions

Don't forget to simplify first

$$\frac{(x^2-1)}{(x+1)^2} = \frac{(x-1)(x+1)}{(x+1)^2} = \frac{(x+1)-1-1}{x+1}$$

$$= \frac{(x+1)-2}{x+1} = \frac{x+1}{x+1} + \frac{-2}{x+1} = \frac{1}{x+1}$$

For partial fractions, the power in numerator must be less than the power in denominator.

If power in numerator \geq power in denominator, do long division first (or add a "0" and simplify algebraically).

Application: Partial Fractions

$$(\chi^{2}+1)(\chi-3)\left[\frac{4}{(x^{2}+1)(x-3)}\right] = \left[\frac{Ax+B}{x^{2}+1} + \frac{C}{x-3}\right](\chi^{2}+1)(\chi-3)$$

If you don't like denominators, get rid of them:

$$4 = (Ax + B)(x - 3) + C(x^{2} + 1)$$

$$4 = Ax^{2} + Bx - 3Ax - 3B + Cx^{2} + C$$

$$4 = (A + C)x^{2} + (B - 3A)x - 3B + C$$

$$4 = (A + C)x^{2} + (B - 3A)x - 3B + C$$

$$0x^{2} + 0x + 4 = (A + C)x^{2} + (B - 3A)x - 3B + C$$

$$\begin{array}{l} \text{Thus} \ 0x^2 + 0x + 4 = (A+C)x^2 + (B-3A)x - 3B + C \\ \text{Thus} \ 0 = A+C, \quad 0 = B-3A, \quad 4 = -3B+C \\ C = -A, \quad B = 3A, \quad 4 = -3(3A) + -A \Rightarrow \\ 4 = -10A. \end{array}$$

Hence
$$A=-\frac{2}{5}$$
, $B=3(-\frac{2}{5})=-\frac{6}{5}$, $C=\frac{2}{5}$.

Thus, $\frac{4}{(x^2+1)(x-3)}=\frac{-\frac{2}{5}x+\frac{6}{5}}{x^2+1}+\frac{\frac{2}{5}}{x-3}=\frac{-2x-6}{5(x^2+1)}+\frac{2}{5(x-3)}$

Note there are many correct ways to solve for A, B, C. For example, one can plug in x = 3 to quickly find C and then solve for A and B.

$$4 = (Ax + B)(x - 3) + C(x^{2} + 1)$$

One can also use matrices to solve linear eqns.

One can also use matrices to solve linear eqns.

Let
$$X = 3$$
: $4 = 3 + (9 + 1)$
 $= 3 + (9 + 1)$
 $= 3 + (9 + 1)$
 $= 3 + (9 + 1)$
 $= 3 + (9 + 1)$

Let $X = 3 + (9 + 1)$
 $= 3 + (9 + 1)$
 $= 3 + (9 + 1)$
 $= 3 + (9 + 1)$
 $= 3 + (9 + 1)$
 $= 3 + (9 + 1)$

Let $X = 3 + (9 + 1)$