nth order LINEAR differential equation:

Thm 2.4.1: If p and g are continuous on (a, b) and the point $t_{0} \in(a, b)$, then there exists a unique function $y=\phi(t)$ defined on (a, b) that satisfies the following initial value problem:

$$
y^{\prime}+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0} .
$$

Thm 3.2.1: If $p:(a, b) \rightarrow R, q:(a, b) \rightarrow R$, and $g:(a, b) \rightarrow R$ are continuous and $a<t_{0}<b$, then there exists a unique function $y=\phi(t), \phi:(a, b) \rightarrow R$ that satisfies the initial value problem

$$
\begin{gathered}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \\
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}
\end{gathered}
$$

hypothesis;

Theorem 4.1.1: If $p_{i}:(a, b) \rightarrow R, i=1, k, n$ and
$g:(a, b) \rightarrow R$ are continuous ad $a<t_{0}<b$, then there exists a unique function $y=\phi(t), \phi:(a, b) \rightarrow R$ that satisfies the initial value problem

$$
\begin{gathered}
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=g(t), \\
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}, \ldots, \quad y^{(n-1)}\left(t_{0}\right)=y_{n-1}
\end{gathered}
$$

Proof: We proved the case $n=1$ using an integrating factor. When $n>1$, see more advanced textbook.

NOTE: Theorem 4.1.1 is VERY useful in the real world. Suppose you can't solve the linear differential equation directly. You may be able to instead approximate the solution - see for example ch 5 series solution (guess $y=\sum a_{n} x^{n}$). which we won't cover in this class or MATH:3800 Elementary Numerical Analysis.

But your approximation is not of much use unless you know where your approximation is valid.

Determine (without solving the problem) an interval in which the solution of the given initial value problem is certain to exist and be unique.

$$
\left.\begin{array}{l}
\frac{(1-t)\left(1+t^{2}\right) y^{\prime \prime \prime}}{(1-t)\left(1+t^{2}\right)}+\frac{\ln |t-5| y^{\prime}+2 y=\sqrt{t+4}}{(1-t)\left(1+t^{2}\right)} y(0)=3 \\
p_{1}(t)=\ln \|t-5\| \\
(1-t)\left(1+t^{2}\right)
\end{array}+s \text { con } t / n \omega_{0}\right)
$$

$$
1+t^{2} \neq 0 \quad \forall \text { real } t
$$

Domain of sorer is subset of \mathbb{R}

Determine (without solving the problem) an interval in which the solution of the given initial value problem is certain to exist and be unique.

$$
(1-t)\left(1+t^{2}\right) y+\ln |t-5| y^{\prime}+2 y=\sqrt{t+4} \quad y(0)=3
$$

$\mathbb{P}_{1}, \mathbb{P}_{2}, g$ arc cont
$[-4,1) \cup(1,5) \cup(5, \infty)$
open interval contain $t_{0}=0 \Rightarrow(-4$,

$$
\begin{aligned}
& t=3 \Rightarrow(1,5) \quad \mid t=6 \Rightarrow(5, \infty) \\
& t=-4,5, \Rightarrow \operatorname{Tim}_{i,-6} \text { does not apply ap }
\end{aligned}
$$

Determine (without solving the problem) an interval in which the solution of the given initial value problem is certain to exist and be unique.

$$
\begin{aligned}
& \frac{(1-t)\left(1+t^{2}\right) y^{\prime \prime \prime}+\underbrace{\ln \mid t-5})}{\sim} y^{\prime}+\underbrace{2 y}_{\sim}=\frac{\sqrt{t+4}}{\sim} y(0)=3 \\
& \rho_{2}(t)=\frac{2}{(1-t)\left(1 t t^{2}\right)} \quad \text { is coll } \\
& \forall t \neq
\end{aligned}
$$

Determine (without solving the problem) an interval in which the solution of the given initial value problem is certain to exist and be unique.

$$
\begin{aligned}
& (1-t)\left(1+t^{2}\right) y^{\prime \prime \prime}+\ln |t-5| y^{\prime}+2 y=\sqrt{t+4} \quad y(0)=3 \\
& g(t)=\frac{\sqrt{t+4}}{(1-t)\left(1+t^{2}\right)} \text { is cont fo } \\
& -4 \\
& \text { and } t \neq 1
\end{aligned}
$$

4.1: General Theory of nth Order Linear Eqns

 When does the following IVP have a unique soln:IVF: $y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=g(t)$,

$$
y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(t_{0}\right)=y_{n-1} .
$$

Suppose $y=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)+\ldots+c_{n} \phi_{n}(t)+\psi(t)$ is the general solution to DE. Then or look af see then $4,1,1$ wronskion
but lets look at and compare to Wronsklain

$$
\begin{aligned}
& y\left(t_{0}\right)=y{ }^{2} \\
& y_{0}=c_{1} \phi_{1}\left(t_{0}\right)+c_{2} \phi_{2}\left(t_{0}\right)+\ldots+c_{n} \phi_{n}\left(t_{0}\right)+\psi\left(t_{0}\right) \\
& \text { Thn 4.1.1 says } \\
& y\left(t_{0}\right)=y \text { if fors an cont } \Rightarrow \text { onigue soln } \\
& y_{1}^{\prime}=e_{1} \phi_{1}^{\prime}\left(t_{0}\right)+c_{2} \phi_{2}^{\prime}\left(t_{0}\right)+\ldots+c_{n} \phi_{n}^{\prime}\left(t_{0}\right)+\psi^{\prime}\left(t_{0}\right) \\
& \text { :n } e_{q} n S \text { forom } \\
& n \text { initi al tolern } \\
& \cdots \sqrt{y^{(n-1)}\left(t_{0}\right)}=y_{n=1}: \quad \text { unKnowns } \\
& y_{n-1}=c_{1} \phi_{1}^{(n-1)}\left(t_{0}\right)+c_{2} \phi_{2}^{(n-1)}\left(t_{0}\right) \quad c_{1}, \ldots c_{n} \\
& +\ldots+c_{n} \phi_{n}^{(n-1)}\left(t_{0}\right)+\psi^{(n-1)}\left(t_{0}\right)
\end{aligned}
$$

Let $b_{k}=y_{k}-\psi^{(k)}\left(t_{0}\right)$. Note that in these equations the c_{i} are the unknowns

Translating this linear system of eqns into matrix form:
$\underbrace{\left[\begin{array}{cccc}\phi_{1}\left(t_{0}\right) & \phi_{2}\left(t_{0}\right) & \ldots & \phi_{n}\left(t_{0}\right) \\ \phi_{1}^{\prime}\left(t_{0}\right) & \phi_{2}^{\prime}\left(t_{0}\right) & \ldots & \phi_{n}^{\prime}\left(t_{0}\right) \\ \phi_{1}^{(n-1)}\left(t_{0}\right) & \phi_{2}^{(n-1)}\left(t_{0}\right) & \ldots & \phi_{n}^{(n-1)}\left(t_{0}\right)\end{array}\right]}_{\omega\left(\phi_{J)-}\right.}[\begin{array}{c}\left.t_{0}\right)\end{array}\left[\begin{array}{c}c_{1} \\ c_{2} \\ \cdot \\ \cdot \\ \cdot \\ c_{n}\end{array}\right]=\underbrace{\left[\begin{array}{c}b_{0} \\ b_{1} \\ \cdot \\ \cdot \\ \cdot \\ b_{n-1}\end{array}\right]}$

Note this equation has a unique solution if and only if

Defn: The Wronskian of the functions, $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ is

$$
W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right) \stackrel{(\underline{t})}{=} \operatorname{det}\left[\begin{array}{cccc}
\phi_{1}(t) & \phi_{2}(t) & \ldots & \phi_{n}(t) \\
\phi_{1}^{\prime}(t) & \phi_{2}^{\prime}(t) & \ldots & \phi_{n}^{\prime}(t) \\
& \cdot & & \\
& \cdot & & \\
\phi_{1}^{(n-1)}(t) & \phi_{2}^{(n-1)}(t) & \ldots & \phi_{n}^{(n-1)}(t)
\end{array}\right]
$$

Note: $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$ is a linearly independent set of fans if $W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)\left(t_{0}\right) \neq 0$ for some t_{0}
deft of corf matrix evalut at an arbitrary t

In other words if ϕ_{i} are homogeneous solutions to an nth order linear $\overline{\mathrm{DE}}$,

$$
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=0
$$

and $\underline{W} \underline{\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)\left(t_{0}\right) \neq 0 \text { for some } t_{0} \text {. } ~}$
eff $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$ is basis for the solution set of this homogeneous equation.

$$
\text { homo gen. } y=c_{1} \phi_{1}+\ldots+c_{n} \phi_{n}
$$

In other words any homogeneous solution can be written as a linear combination of these basis elements:

$$
y=c_{1} \phi_{1}+\ldots+c_{n} \phi_{n}
$$

Moreover, the general soln to the non-homogeneous eqn

$$
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=g(t)
$$

is just the translated version of the general homogeneous solution:

$$
y=c_{1} \phi_{1}+\ldots+c_{n} \phi_{n}+(1)
$$

where ψ is a non-homogeneous solution.

$$
A x=0 \quad\left(\begin{array}{c}
\psi \text { is a non-Komeneous solution. } \\
\text { compare to } M A
\end{array}\right.
$$

$$
A x=b
$$

In other words if ϕ_{i} are homogeneous solutions to an nth order linear DE,

$$
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=0
$$

and $W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)\left(t_{0}\right) \neq 0$ for some t_{0}.
eff $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$ is a basis for the solution set of this homogeneous equation.

In other words any homogeneous solution can be written as a linear combination of these basis elements:

$$
S t e p 1 \quad y=c_{1} \phi_{1}+\ldots+c_{n} \phi_{n}
$$

Moreover, the general soln to the non-homogeneous eqn

$$
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=g(t)
$$

is just the translated version of the general homogeneous
$S+e_{0} L^{\text {solution: }}$ find $\psi=$
(where ψ is a non-homogeneous solution.

Linear Independence and the Wronskian

$\phi_{1}, \ldots, \phi_{n}$ are linearly independent
(ff) \leftarrow deft $c_{i}=0 \forall i$
$c_{1} \phi_{1}(t)+\ldots+c_{n} \phi_{n}(t)=$ Oh as a unique solution (that works for all t). Defn fum MATH 2700 inf
the following system of equations has a unique solution is

$$
\begin{aligned}
& \text { take } \\
& \text { dirivatras }
\end{aligned} \begin{aligned}
& c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)+\ldots+c_{n} \phi_{n}(t)=0 \\
& l_{1}^{\prime} \phi_{1}^{\prime}(t)+c_{2} \phi_{2}^{\prime}(t)+\ldots+c_{n} \phi_{n}^{\prime}(t)=0 \\
& c_{1} \phi_{1}^{(n-1)}(t)+c_{2} \phi_{2}^{(n-1)}(t)+\ldots+c_{n} \phi_{n}^{(n-1)}(t)=0
\end{aligned}
$$

iff the following system of equations has a unique solution

$$
\left[\begin{array}{cccc}
\phi_{1}(t) & \phi_{2}(t) & \ldots & \phi_{n}(t) \\
\phi_{1}^{\prime}(t) & \phi_{2}^{\prime}(t) & \ldots & \phi_{n}^{\prime}(t) \\
& \cdot & & \\
& \cdot & & \\
\phi_{1}^{(n-1)}(t) & \phi_{2}^{(n-1)}(t) & \ldots & \phi_{n}^{(n-1)}(t)
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right]
$$

Note this equation has a unique solution if and only if for some t_{0}

iff $W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)\left(t_{0}\right) \neq 0$,
$\phi_{1}, \ldots, \phi_{n}$ are linearly independent

iff
$W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)\left(t_{0}\right) \neq 0$,

Example: Determine if $\left\{1+2 t, 5+4 t^{2}, 6-8 t+8 t^{2}\right\}$ are linearly independent:

Method 1: MATH 2700 $\left\{1, t, t^{2}\right\}$ Solve $c_{1}(\underline{1}+2 \underline{t})+c_{2}\left(5+4 t^{2}\right)+c_{3}\left(\underline{6}-\underline{8} t+\underline{8} t^{2}\right)=0$

Or equivalently,
Vector solve c_{1} format
$\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{l}5 \\ 0 \\ 4\end{array}\right]+c_{3}\left[\begin{array}{c}6 \\ -8 \\ 8\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

Or equivalently, solve matrix format

$$
\underbrace{\left[\begin{array}{ccc}
1 & 5 & 6 \\
2 & 0 & -8 \\
0 & 4 & 8
\end{array}\right]}\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Example: Determine if $\left\{1+2 t, 5+4 t^{2}, 6-8 t+8 t^{2}\right\}$ are linearly independent:

Method 2: Check the Wronskian

$$
\operatorname{det}\left[\begin{array}{ccc}
1+2 t & 5+4 t^{2} & 6-8 t+8 t^{2} \\
2 & 8 t & -8+16 t \\
0 & 8 & 16
\end{array}\right]
$$

This works even if fans are not polynomials (or lincaa count of)

Method 2: Check the Wronskian

$$
\begin{aligned}
& +(1+2 t)\left|\begin{array}{cc}
8 t & -8 t / 6 t \\
8 & 16
\end{array}\right|-2\left|\begin{array}{cc}
5+4 t^{2} & 6^{6} \\
8 & 16
\end{array}\right| \\
& =(1+2 t)(8 \cdot 16 t-8(-8+16 t)) \\
& -2\left[16\left(5+4 t^{2}\right)-8\left(6-8 t+8 t^{2}\right)\right] \\
& =e t c \ldots \nRightarrow 0 \text { or sone to } \\
& \Rightarrow l . i_{-}
\end{aligned}
$$

Abel's theorem: if ϕ_{i} are homogeneous solutions to an nth order linear DE,

$$
\begin{aligned}
& \left.1 y^{(n)}+p_{1}(t)\right)^{(n-1)} A \ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=0 \\
& \text { then } \frac{W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)(t)=c e^{-\int p_{1}(t) d t} \text { for some con- }}{\text { stans } c} \begin{array}{l}
\eta^{\text {th }} \text { order } \operatorname{lin} D E \\
\rightarrow \text { oe of } y^{(n-1)}
\end{array} .
\end{aligned}
$$

Ex: Find the Wronskian of a fundamental set of solutions of the DE

Method 1: Find homogeneous solution $\omega\left(\phi_{1}, \phi_{2}\right)=\left\lvert\, \begin{array}{cc}\phi_{1} & 1_{2} \\ \phi_{1}^{\prime} & \phi_{2}^{\prime}\end{array}\right.$
old method
, ${ }^{2}+5 r=0$ implies $r=0,-5$
homog sol'n $y=c_{1} e^{0 t}+c_{2} e^{-5 t}=c_{1}(1)+c_{2}\left(e^{-5 t}\right)=c_{1}+c_{2} e^{-5 t}$
A fundamental set of solutions: $\left\{1, e^{-5 t}\right\}$ a basis for sol'n spare,
Wronskian $=W\left(1, e^{-5 t}\right)(t)=\operatorname{det}\left(\begin{array}{l}1 \\ 0\end{array}{\underset{-}{e} e^{-5 t}}_{-5 t}\right)=5 e^{-5 t}$

Method 2: Abel's theorem: Wronskian $=c e^{-\int p_{1}(t) d t}$

$$
\begin{aligned}
& 1 y+\left(5 y^{\prime}=0 \text { implies } p_{1}(t)=5\right. \\
& \omega\left(\phi_{1}, \phi_{2}\right)=C e^{-\int 5 d t}=C e^{-5 t} \\
& y^{\prime \prime}+5 y^{\prime}+6 y=0 \Rightarrow \omega\left(f_{1}, f_{2}\right)(t) \\
& y^{\prime \prime}+5 y^{\prime}+\cos t y=\ln |t|-\lambda=c e^{-s t} \\
& \frac{2}{2} y^{\prime \prime}+10 y^{\prime \prime \prime}+\frac{\sim}{2}=\sim \\
& p_{1}(t)=5 \quad \omega\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\left(t_{0}\right)=c e^{-5}
\end{aligned}
$$

Method 2: Abel's theorem: Wronskian $=c e^{-\int p_{1}(t) d t}$ $y^{\prime \prime}+5 y^{\prime}=0$ implies $p_{1}(t)=5$.

Thus Wronskian $=W\left(1, e^{-5 t}\right)(t)=c e^{-\int 5 d t}=c e^{-5 t}$

$$
\begin{aligned}
& \text { If we are giren } \\
& \omega\left(1, e^{-5 t}\right)(0)=-5 \text { plog ind } \\
& -S=c e^{-5(0)} \Rightarrow c=-S \Rightarrow \omega=-5 e^{-5 t}
\end{aligned}
$$

