# Summary of sections 3.1, 3, 4:

Solve linear homogeneous 2nd order DE with constant coefficients.

Solve ay'' + by' + cy = 0. Educated guess  $y = e^{rt}$ , then

$$ar^{2}e^{rt} + bre^{rt} + ce^{rt} = 0$$
 implies  $ar^{2} + br + c = 0$ ,

Suppose  $r=r_1, r_2$  are solutions to  $ar^2+br+c=0$   $r_1, r_2=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ 

If  $r_1 \neq r_2$ , then  $b^2 - 4ac \neq 0$ .

Hence a general solution is  $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ 

If  $b^2 - 4ac > 0$ , general sol'n is  $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ .

If  $b^2 - 4ac < 0$ , change format to linear combination of real-valued functions instead of complex valued functions by using Euler's formula.

general solution is  $y = c_1 e^{dt} cos(nt) + c_2 e^{dt} sin(nt)$  where  $r = d \pm in$ 

If  $b^2 - 4ac = 0$ ,  $r_1 = r_2$ , so need 2nd (independent) solution:  $te^{r_1t}$ 

Hence general solution is  $y = c_1 e^{r_1 t} + c_2 t e^{r_1 t}$ .

Initial value problem: use  $y(t_0) = y_0$ ,  $y'(t_0) = y'_0$  to solve for  $c_1, c_2$  to find unique solution.

### 1st order LINEAR differential equation:

Thm 2.4.1: If  $p:(a,b)\to R$  and  $g:(a,b)\to R$  are continuous and  $a< t_0< b$ , then there exists a unique function  $y=\phi(t), \ \phi:(a,b)\to R$  that satisfies the

IVP: 
$$y' + p(t)y = g(t)$$
,  $y(t_0) = y_0$ 

Proof 1: Constructive proof (use integrating factor to find solution).

Proof 2 outline: Use linearity.

### 1st order LINEAR differential equation:

Thm 2.4.1: If  $p:(a,b)\to R$  and  $g:(a,b)\to R$  are continuous and  $a< t_0< b$ , then there exists a unique function  $y=\phi(t),\ \phi:(a,b)\to R$  that satisfies the

IVP: 
$$y' + p(t)y = g(t)$$
,  $y(t_0) = y_0$ 

Thm: If  $y = \phi_1(t)$  is a solution to <u>homogeneous</u> equation, y' + p(t)y = 0, then  $y = c\phi_1(t)$  is the general solution to this equation.

If in addition  $y=\psi(t)$  is a solution to non-homogeneous equation, y'+p(t)y=g(t), then  $y=c\phi_1(t)+\psi(t)$  is the general solution to this equation.

### 1st order LINEAR differential equation:

Thm 2.4.1: If  $p:(a,b) \to R$  and  $g:(a,b) \to R$  are continuous and  $a < t_0 < b$ , then

 $\exists !$  function  $y = \phi(t)$ ,  $\phi: (a,b) \to R$  that satisfies

IVP: 
$$y' + p(t)y = g(t)$$
,  $y(t_0) = y_0$ 

### 2nd order LINEAR differential equation:

Thm 3.2.1: If  $p:(a,b) \to R$ ,  $q:(a,b) \to R$ , and  $g:(a,b) \to R$  are continuous and  $a < t_0 < b$ , then  $\exists !$  function  $y = \phi(t)$ ,  $\phi:(a,b) \to R$  that satisfies

IVP: 
$$y'' + p(t)y' + q(t)y = g(t)$$
,  $y(t_0) = y_0$ ,  $y'(t_0) = y'_0$ 

#### 2nd order LINEAR differential equation:

Thm 3.2.1: If  $p:(a,b)\to R$ ,  $q:(a,b)\to R$ , and  $g:(a,b)\to R$  are continuous and  $a< t_0 < b$ , then  $\exists !$  function  $y=\phi(t)$ ,  $\phi:(a,b)\to R$  that satisfies

IVP: y'' + p(t)y' + q(t)y = g(t),  $y(t_0) = y_0$ ,  $y'(t_0) = y'_0$ 

#### 2nd order LINEAR differential equation:

Thm 3.2.1: If  $p:(a,b)\to R$ ,  $q:(a,b)\to R$ , and  $g:(a,b)\to R$  are continuous and  $a< t_0 < b$ , then  $\exists !$  function  $y=\phi(t)$ ,  $\phi:(a,b)\to R$  that satisfies

IVP: y'' + p(t)y' + q(t)y = g(t),  $y(t_0) = y_0$ ,  $y'(t_0) = y'_0$ 

Thm 3.2.2: If  $\phi_1$  and  $\phi_2$  are two solutions to a <u>homogeneous</u> linear differential equation

$$y'' + p(t)y' + q(t)y = 0$$

then  $c_1\phi_1+c_2\phi_2$  is also a solution to this linear differential equation.

Proof of thm 3.2.2:

Since  $y(t) = \phi_i(t)$  is a solution to the linear homogeneous differential equation y'' + py' + qy = 0 where p and q are functions of t (note this includes the case with constant coefficients), then

Claim:  $y(t) = c_1 \overline{\phi_1(t)} + c_2 \overline{\phi_2(t)}$  is also a solution to y'' + py' + qy = 0

Pf of claim:

Claim: If  $y = \phi_1(t)$  and  $y = \phi_2(t)$  are linearly independent solutions to y'' + py' + qy = 0, then

general solution is  $y(t) = c_1\phi_1(t) + c_2\phi_2(t)$ 

That is any solution to this linear 2nd order homogeneous differential equation can be written as a linear combination of the linear independent functions  $y = \phi_1(t)$  and  $y = \phi_2(t)$ .

Claim: If  $y = \phi_1(t)$  and  $y = \phi_2(t)$  are linearly independent solutions to y'' + py' + qy = 0, then

general solution is  $y(t) = c_1\phi_1(t) + c_2\phi_2(t)$ 

That is any solution to this linear 2nd order homogeneous differential equation can be written as a linear combination of the linear independent functions  $y = \phi_1(t)$  and  $y = \phi_2(t)$ .

# Derivation of general solutions:

Solve ay'' + by' + cy = 0. Educated guess  $y = e^{rt}$ , then  $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$  implies  $ar^2 + br + c = 0$ ,

Suppose 
$$r=r_1, r_2$$
 are solutions to  $ar^2+br+c=0$  
$$r_1, r_2=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

If  $b^2 - 4ac > 0$  we guessed  $e^{rt}$  is a solution and noted that any linear combination of solutions is a solution to a homogeneous linear differential equation.



Section 3.3: If  $b^2 - 4ac < 0$ , :

Changed format of  $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$  to linear combination of real-valued functions instead of complex valued functions by using Euler's formula:

$$e^{it} = cos(t) + isin(t)$$

Hence  $e^{(d+in)t} = e^{dt}e^{int} = e^{dt}[cos(nt) + isin(nt)]$ 

Let  $r_1 = d + in$ ,  $r_2 = d - in$ 

$$y = c_1 e^{(d+in)t} + c_2 e^{(d-in)t} = c_1 e^{dt+int} + c_2 e^{dt-int}$$

$$= c_1 e^{dt} e^{int} + c_2 e^{dt} e^{-int}$$

$$= c_1 e^{dt} [\cos(nt) + i\sin(nt)] + c_2 e^{dt} [\cos(-nt) + i\sin(-nt)]$$

$$= c_1 e^{dt} \cos(nt) + ic_1 e^{dt} \sin(nt) + c_2 e^{dt} \cos(nt) - ic_2 e^{dt} \sin(nt)$$

$$= (c_1 + c_2) e^{dt} \cos(nt) + i(c_1 - c_2) e^{dt} \sin(nt)$$

$$= k_1 e^{dt} \cos(nt) + k_2 e^{dt} \sin(nt)$$

$$r_1, r_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = d \pm int$$

# Alternate proof using linearity:

$$y=e^{dt+int}=e^{dt}[cos(nt)+isin(nt)]$$
 and 
$$y=e^{dt-int}=e^{dt}[cos(-nt)+isin(-nt)]=e^{dt}[cos(nt)-isin(nt)]$$
 are solutions

#### Linear combinations of solutions are solutions:

$$y = e^{dt}[\cos(nt) + i\sin(nt)] + e^{dt}[\cos(nt) - i\sin(nt)]$$
$$y = e^{dt}[\cos(nt) + i\sin(nt)] - e^{dt}[\cos(nt) - i\sin(nt)]$$

Thus  $y = 2e^{dt}cos(nt)$  and  $y = 2ie^{dt}sin(nt)$  are both solutions

Since  $y=2e^{dt}cos(nt)$  and  $y=2ie^{dt}sin(nt)$  are solutions to ay''+by'+cy=0 where  $b^2-4ac<0$ ,

Section 3.4: If  $b^2 - 4ac = 0$ , then  $r_1 = r_2$ . Hence one sol'n is  $y = e^{r_1 t}$  Need  $2^{nd}$  sol'n to ay'' + by' + cy = 0.

If  $y = e^{rt}$  is a solution,  $y = ce^{rt}$  is a solution.

How about  $y = v(t)e^{rt}$ ?

$$y' = v'(t)e^{rt} + v(t)re^{rt}$$

$$y'' = v''(t)e^{rt} + v'(t)re^{rt} + v'(t)re^{rt} + v(t)r^{2}e^{rt}$$

$$= v''(t)e^{rt} + 2v'(t)re^{rt} + v(t)r^{2}e^{rt}$$

$$a(v''e^{rt} + 2v're^{rt} + vr^{2}e^{rt}) + b(v'e^{rt} + vre^{rt}) + cve^{rt} = 0$$

$$a(v''(t) + 2v'(t)r + v(t)r^{2}) + b(v'(t) + v(t)r) + cv(t) = 0$$

$$av''(t) + 2av'(t)r + av(t)r^{2} + bv'(t) + bv(t)r + cv(t) = 0$$

$$av''(t) + (2ar + b)v'(t) + (ar^{2} + br + c)v(t) = 0$$

$$av''(t) + (2ar + b)v'(t) + (ar^{2} + br + c)v(t) = 0$$
$$av''(t) + (2a(\frac{-b}{2a}) + b)v'(t) + 0 = 0$$

since 
$$ar^2 + br + c = 0$$
 and  $r = \frac{-b}{2a}$ 

$$av''(t) + (-b+b)v'(t) = 0.$$
 Thus  $av''(t) = 0.$ 

Hence v''(t)=0 and  $v'(t)=\overline{k_1}$  and  $\overline{v(t)}=\overline{k_1t}+\overline{k_2}$ Hence  $v(t)e^{r_1t}=(k_1t+k_2)e^{r_1t}$  is a soln

Thus  $te^{r_1t}$  is a nice second solution.

Hence general solution is  $y = c_1 e^{r_1 t} + c_2 t e^{r_1 t}$ 

Section 3.4: Reduction of order

Suppose  $y = \phi_1(t)$  is a solution to y'' + p(t)y' + q(t)y = 0

Guess  $y = v(t)\phi_1(t)$  is also a solution.

Solve for unknown function v(t) by plugging in:

 $y=\phi_1(t)$  is a solution to y''+p(t)y'+q(t)y=0 implies  $\phi_1''+p(t)\phi_1'+q(t)\phi_1=0$ 

$$y = v(t)\phi_1(t) \implies y' = v'(t)\phi_1(t) + v(t)\phi_1'(t)$$

$$y'' = v''(t)\phi_1(t) + v'(t)\phi_1'(t) + v'(t)\phi_1'(t) + v(t)\phi_1''(t)$$

$$= v''(t)\phi_1(t) + 2v'(t)\phi_1'(t) + v(t)\phi_1''(t)$$

$$y'' + p(t)y' + q(t)y = 0$$

$$v''(t)\phi_1(t) + 2v'(t)\phi_1'(t) + v(t)\phi_1''(t)$$

$$+ p(t)[v'(t)\phi_1(t) + v(t)\phi_1'(t)]$$

$$+ q(t)[v(t)\phi_1(t)] = 0$$

Section 3.4: Reduction of order

Suppose  $y = \phi_1(t)$  is a solution to y'' + p(t)y' + q(t)y = 0

Guess  $y = v(t)\phi_1(t)$  is also a solution.

Solve for unknown function v(t) by plugging in:

$$v''(t)\phi_1(t) + 2v'(t)\phi_1'(t) + p(t)v'(t)\phi_1(t) = 0$$

Section 3.4: Reduction of order

Suppose  $y = \phi_1(t)$  is a solution to y'' + p(t)y' + q(t)y = 0

Guess  $y = v(t)\phi_1(t)$  is also a solution.

Solve for unknown function  $\overline{v(t)}$  by plugging in:

$$v''(t)\phi_1(t) + v'(t)[2\phi_1'(t) + p(t)\phi_1(t)] = 0$$

 $v''(t)\phi_1(t) + v'(t)[2\phi_1'(t) + p(t)\phi_1(t)] = 0$ 

Solve: y'' + y = 0, y(0) = -1, y'(0) = -3

Solve: y'' + y = 0, y(0) = -1, y'(0) = -3

 $r^2+1=0$  implies  $r^2=-1$ . Thus  $r=\pm i$ .

NOT RECOMMENDED: work with  $y = c_1 e^{it} + c_2 e^{-it}$ 

$$y' = ic_1 e^{it} - ic_2 e^{-it}$$

$$y(0) = -1$$
:  $-1 = c_1 e^0 + c_2 e^0$  implies  $-1 = c_1 + c_2$ .

$$y'(0) = -3$$
:  $-3 = ic_1e^0 - ic_2e^0$  implies  $-3 = ic_1 - ic_2$ .

$$-1i = ic_1 + ic_2.$$

$$-3 = ic_1 - ic_2$$
.

$$-1i = ic_1 + ic_2.$$

$$-3 = ic_1 - ic_2$$
.

$$2ic_1 = -3 - i$$
 implies  $c_1 = \frac{-3i - i^2}{-2} = \frac{3i - 1}{2}$ 

$$2ic_2 = 3 - i$$
 implies  $c_2 = \frac{3i - i^2}{-2} = \frac{-3i - 1}{2}$ 

Euler's formula:  $e^{ix} = cos(x) + isin(x)$ 

$$y = \left(\frac{3i-1}{2}\right)e^{it} + \left(\frac{-3i-1}{2}\right)e^{-it}$$

$$= \left(\frac{3i-1}{2}\right)\left[\cos(t) + i\sin(t)\right] + \left(\frac{-3i-1}{2}\right)\left[\cos(-t) + i\sin(-t)\right]$$

$$= \left(\frac{3i-1}{2}\right)[\cos(t) + i\sin(t)] + \left(\frac{-3i-1}{2}\right)[\cos(t) - i\sin(t)]$$

$$= \left(\frac{3i}{2}\right)\cos(t) + \left(\frac{3i}{2}\right)i\sin(t) + \left(\frac{-1}{2}\right)\cos(t) + \left(\frac{-1}{2}\right)i\sin(t)$$

$$+ \left(\frac{-3i}{2}\right)\cos(t) - \left(\frac{-3i}{2}\right)i\sin(t) + \left(\frac{-1}{2}\right)\cos(t) - \left(\frac{-1}{2}\right)i\sin(t)$$

$$= \left(\frac{3i}{2}\right)i\sin(t) + \left(\frac{-1}{2}\right)\cos(t) + \left(\frac{3i}{2}\right)i\sin(t) + \left(\frac{-1}{2}\right)\cos(t)$$

$$= -\left(\frac{3}{2}\right)\sin(t) - \left(\frac{1}{2}\right)\cos(t) - \left(\frac{3}{2}\right)\sin(t) - \left(\frac{1}{2}\right)\cos(t)$$

$$= -3\sin(t) - 1\cos(t)$$

Solve: y'' + y = 0, y(0) = -1, y'(0) = -3

 $r^2+1=0$  implies  $r^2=-1$ . Thus  $r=\pm i$ .

#### RECOMMENDED Method:

Since 
$$r = 0 \pm 1i$$
,  $y = c_1 cos(t) + c_2 sin(t)$ 

Then 
$$y' = -c_1 sin(t) + c_2 cos(t)$$

$$y(0) = -1$$
:  $-1 = c_1 cos(0) + c_2 sin(0)$  implies  $-1 = c_1$ 

$$y'(0) = -3$$
:  $-3 = -c_1 sin(0) + c_2 cos(0)$  implies  $-3 = c_2$ 

Thus IVP solution: y = -cos(t) - 3sin(t)

# When does the following IVP have unique sol'n:

IVP: 
$$ay'' + by' + cy = 0$$
,  $y(t_0) = y_0$ ,  $y'(t_0) = y_1$ .

Suppose  $y = c_1\phi_1(t) + c_2\phi_2(t)$  is a solution to ay'' + by' + cy = 0.

Then 
$$y' = c_1 \phi_1'(t) + c_2 \phi_2'(t)$$

$$y(t_0) = y_0$$
:  $y_0 = c_1\phi_1(t_0) + c_2\phi_2(t_0)$ 

$$y'(t_0) = y_1$$
:  $y_1 = c_1 \phi_1'(t_0) + c_2 \phi_2'(t_0)$ 

To find IVP solution, need to solve above system of two equations for the unknowns  $c_1$  and  $c_2$ .

Note the IVP has a unique solution if and only if the above system of two equations has a unique solution for  $c_1$  and  $c_2$ .

$$y(t_0) = y_0$$
:  $y_0 = c_1\phi_1(t_0) + c_2\phi_2(t_0)$   
 $y'(t_0) = y_1$ :  $y_1 = c_1\phi'_1(t_0) + c_2\phi'_2(t_0)$ 

Note that in these equations  $c_1$  and  $c_2$  are the unknowns and  $y_0, \phi_1(t_0), \phi_2(t_0), y_1, \phi_1'(t_0), \phi_2'(t_0)$  are the constants. We can translate this linear system of equations into matrix form:

Note this equation has a unique solution if and only if



Definition: The Wronskian of two differential functions,  $\phi_1$  and  $\phi_2$  is

$$W(\phi_1, \phi_2) = \phi_1 \phi_2' - \phi_1' \phi_2 =$$

Definition: The Wronskian of two differential functions,  $\phi_1$  and  $\phi_2$  is

$$W(\phi_1, \phi_2) = \phi_1 \phi_2' - \phi_1' \phi_2 = \begin{vmatrix} \phi_1 & \phi_2 \\ \phi_1' & \phi_2' \end{vmatrix}$$

# Examples:

1.) 
$$W(cos(t), sin(t)) = \begin{vmatrix} cos(t) & sin(t) \\ -sin(t) & cos(t) \end{vmatrix}$$

$$= \cos^2(t) + \sin^2(t) = 1 > 0.$$

2.)  $W(e^{dt}cos(nt), e^{dt}sin(nt))$ 

$$= \begin{vmatrix} e^{dt}cos(nt) & e^{dt}sin(nt) \\ de^{dt}cos(nt) - ne^{dt}sin(nt) & de^{dt}sin(nt) + ne^{dt}cos(nt) \end{vmatrix}$$

$$=\!e^{dt}cos(nt)(de^{dt}sin(nt)+ne^{dt}cos(nt))-e^{dt}sin(nt)(de^{dt}cos(nt)-ne^{dt}sin(nt))$$

$$= e^{2dt} [cos(nt)(dsin(nt) + ncos(nt)) - sin(nt)(dcos(nt) - nsin(nt))]$$

$$=\!e^{2dt}[dcos(nt)sin(nt)+ncos^2(nt)-dsin(nt)cos(nt)+nsin^2(nt)])$$

$$= e^{2dt}[ncos^{2}(nt) + nsin^{2}(nt)] = ne^{2dt}[cos^{2}(nt) + sin^{2}(nt)]$$

$$= ne^{2dt} > 0$$
 for all  $t$ .

