Summary of sections 3.1, 3, 4:
Solve linear homogeneous 2nd order DE with
constant coetfficients.

Solve ay” + by’ + cy = 0. Educated guess y = €',
then

ar?e’™ + bre" + ce™ = 0 implies ar? + br + ¢ = 0,

Suppose 1 = 1, 9 are solutions to ar® + br + ¢ = 0

—b+vVb2—4ac
2a

', T2 =
If 71 # 79, then b* — 4ac # 0.

Hence a general solution is y = c1e’" + coe™



If > — 4ac > 0, general sol'n is y = ci;e™! + cye™!.

If b — 4ac < 0, change format to linear
combination of real-valued functions instead of
complex valued functions by using Euler’s formula.

general solution is iy = cie¥cos(nt) + caesin(nt)

where r = d + 1n

If b — 4ac = 0, 71 = 73, so need 2nd (independent)
solution: te™!

Hence general solution is 1y = c;e™" + cote™?.

Initial value problem: use y(ty) = vo, ¥'(tg) = y; to
solve for ¢y, co to find unique solution.



1st order LINEAR differential equation:

Thm 2.4.1: If p: (a,b) > Rand g: (a,b) — R are
continuous and a < ty < b, then there exists a
unique function y = ¢(t), ¢ : (a,b) — R that
satisfies the

IVP: ' +p(t)y = g(t), y(to) = yo

Proof 1: Constructive proof (use integrating factor
to find solution).

Proof 2 outline: Use linearity.



1st order LINEAR differential equation:

Thm 2.4.1: If p: (a,b) - Rand g : (a,b) — R are
continuous and a < ty < b, then there exists a
unique function y = ¢(t), ¢: (a,b) — R that
satisfies the

IVP: v/ + p(t)y = g(t), y(to) = yo

Thm: If y = ¢1() is a solution to homogeneous
equation, ¥' 4+ p(t)y = 0, then y = c¢y(t) is the
general solution to this equation.

If in addition y = ¢/(t) is a solution to
non-homogeneous equation, ¥ + p(t)y = g(t), then
y = cp1(t) + 1(t) is the general solution to this
equation.




1st order LINEAR differential equation:

Thm2.4.1: If p:(a,b) - Rand g : (a,b) = R are
continuous and a < ty < b, then
3! function y = ¢(t), ¢ : (a,b) — R that satisfies

IVP: o +p(t)y = g(t), y(to) = o

2nd order LINEAR differential equation:

Thm 3.2.1: If p: (a,b) — R, q: (a,b) — R, and
g : (a,b) = R are continuous and a < ty < b, then
3! function y = ¢(t), ¢ : (a,b) — R that satisfies

IVP: o + p(t)y + q(t)y = g(t), y(to) = o, ¥'(to) = ¥y,




2nd order LINEAR differential equation:

Thm321: Ifp: (a,b) = R, ¢: (a,b) — R, and
g : (a,b) — R are continuous and a < ty < b, then
3! function y = ¢(t), ¢ : (a,b) — R that satisfies

IVP: o + p(t)y + q(t)y = g(t), y(to) = w0, ¥ (to) =y,



2nd order LINEAR differential equation:

Thm321: Ifp: (a,b) = R, ¢: (a,b) — R, and
g : (a,b) — R are continuous and a < ty < b, then
3! function y = ¢(t), ¢ : (a,b) — R that satisfies

IVP: o + p(t)y + q(t)y = g(t), y(to) = w0, ¥ (to) =y,



Thm 3.2.2: If 1 and ¢y are two solutions to a homogeneous linear
differential equation

y' +pt)y +q(t)y =0

then c1¢1 + cog9 is also a solution to this linear differential equation.

Proof of thm 3.2.2:

Since y(t) = ¢;(t) is a solution to the linear homogeneous

differential equation y” + py’ + qy = 0 where p and ¢ are functions
of ¢ (note this includes the case with constant coefficients), then



Claim: y(t) = c1¢01(t) + cago(t) is also a solution to vy + py’ + qy = 0

Pt of claim:



Claim: If y = ¢1(t) and y = ¢»(t) are linearly
independent solutions to 4" + py’ + qy = 0, then

general solution is y(t) = c101(t) + cada(t)

That is any solution to this linear 2nd order
homogeneous differential equation can be written as
a linear combination of the linear independent

functions y = ¢1(t) and y = ¢o(t).



Claim: If y = ¢1(t) and y = ¢»(t) are linearly
independent solutions to 4" + py’ + qy = 0, then

general solution is y(t) = c101(t) + cada(t)

That is any solution to this linear 2nd order
homogeneous differential equation can be written as
a linear combination of the linear independent

functions y = ¢1(t) and y = ¢o(t).



Derivation of general solutions:

Solve ay” + by’ + cy = 0. Educated guess y = €', then

ar?e’ + bre™ + ce™ = 0 implies ar® 4+ br + ¢ = 0,

Suppose r = 11,79 are solutions to ar’ +br +c =0
_ —bEvb*—4ac
i 2a

1,72

f b*> — 4ac > 0 we guessed €'’ is a solution and noted that any
inear combination of solutions is a solution to a homogeneous

inear differential equation.




Section 3.3: If b — dac < 0, :

Changed format of y = c;e"* + e to linear combination of
real-valued functions instead of complex valued functions by using
Euler's formula:

e = cos(t) + isin(t)
Hence eldtm)t — edigint — edt[cos(nt) + isin(nt)]

Let ri =d+n, 19 =d—n



y — Cle(d—i_in)t _I_ 626(d—?:n)t - Cledt—F’int _|_ 62€dt—int

— ¢ edtemt 4 CQthe—mt

= c1e[cos(nt) + isin(nt)] + coe™[cos(—nt) + isin(—nt)]

dt

= cie¥cos(nt) + icie® at

sin(nt) + cae¥cos(nt) — icoe¥sin(nt)
=(c1 + c2)eYcos(nt) + i(c; — c2)e sin(nt)

= kiecos(nt) + kee“sin(nt)



—b+\b?2—4ac d -
2a T

- ant

ry, T2 =
Alternate proof using linearity:
y = et — edlcos(nt) + isin(nt)] and

y = e = eWlcos(—nt) + isin(—nt)] = e[cos(nt) — isin(nt)]
are solutions

| inear combinations of solutions are solutions:
| 4+ e%cos(nt) — isin(nt)

y = e[cos(nt) + isin(nt)

y = e®[cos(nt) + isin(nt)] — e¥[cos(nt) — isin(nt)

Thus y = 2e%cos(nt) and y = 2ie™sin(nt) are both solutions



Since y = 2e%cos(nt) and y = 2ie? sin(nt) are solutions to
ay” + by’ + cy = 0 where b* — 4dac < 0,



Section 3.4: If b — 4ac = 0, then r{ = 7.
Hence one sol'n is y = ™! Need 2" sol'n to ay” + by’ + cy = 0.

f y = e is a solution, y = ce" is a solution.
How about y = v(t)e™?
y = (t)e"™ + v(t)re”
y =0"(t)e" + ' (t)re™ + V' (t)re"t + v(t)rie’
= v"(t)e" + 20 (t)re™ + v(t)r’e’?
a(v"e™ + 2v're" + vrfe™) + b(v'e" + vre™) + cve™ = 0

a(V"(t) + 20" (t)r + v(t)r?) + b(V'(t) + v(t)r) + cv(t) = 0
V" (t) + 2av' (t)r + av(t)r* + bv'(t) + bu(t)r + ( ) =20
av”(t) + (2ar + b)v'(t) + (ar® + br + c)v(t) =



av” (t) + (2ar + b)v'(t) + (ar* 4+ br + c)v(t) = 0
av”(t) + (2a(52) + b)v' () +0 =0

since ar2+br+c:0andr:§—£’

av”(t) + (=b+0)V'(t) = 0. Thus av”(t) = 0.
Hence v"(t) = 0 and v'(t) = k1 and v(t) = kit + ko

Hence v(t)e™" = (kit + ko)e™" is a soln

Thus te"'! is a nice second solution.

Hence general solution is y = cie™! + cote™



Section 3.4: Reduction of order
Suppose y = ¢1(t) is a solution to " + p(t)y' + q(t)y = 0
Guess y = v(t)¢1(t) is also a solution.

Solve for unknown function v(¢) by plugging in:



y = ¢1(t) is a solution to " + p(t)y" + q(t)y = 0
implies ¢f + p(t)¢| + q(t)¢1 =0

y:v( )1(t) =y =v(t)ea(t) +o(t)or(t)
= v()pr(t) + ' ()P (1) + V' (1)1 () + v(t) ¢y ()
V()@ () + 20°(8) @ (1) + v(t) gy (1)



y' 4+ p(t)y 4+ q(t)y =0

() (t) + 20 (1)@ (t) + v(t)e) ()
+ p()[V' (t)o1(t) + v(t)e) (L))
+ q(t)[v(t)p1(t)] =0



Section 3.4: Reduction of order
Suppose y = ¢1(t) is a solution to " + p(t)y + q(t)y = 0
Guess y = v(t)¢1(t) is also a solution.

Solve for unknown function v(t) by plugging in:

V(t)ou(t) + 20(0)er(t) + p()v'(t)e(t) =0



Section 3.4: Reduction of order
Suppose y = ¢1(t) is a solution to " + p(t)y + q(t)y = 0
Guess y = v(t)¢1(t) is also a solution.

Solve for unknown function v(t) by plugging in:

v ()i (t) + V(t)[201(t) + p(t)oi(t)] =0



V(t)ei(t) + V(1)[261(t) + p(t)or(t)] =0



Solve: " 4+y =0, y(0) = —1, ¥'(0)

—3



Solve: " +y =0, y(0) = —1, ¥'(0) = -3

r? +1 =0 implies 7> = —1. Thus r = 4.

NOT RECOMMENDED: work with y = cie'* + cpe™™

Yy =icie — icoe "

y(0) = —1: —1=ce’ + e’ implies —1 = ¢; + ca.

! implies —3 = 1¢; — 109.

Y (0) = —3: —3=1icie’ —icge
—17 = iCl + iCQ.

—3 = iCl — ?:CQ.



— 17 = iCl + iCQ.

—3 = iCl — iCQ.

2icg = 3 — 1 implies ¢ = == = =5
Euler's formula: e = cos(x) + isin(x)

Yy = (Bi—l)eit | (—3;’—1)6—7515

)[cos(t) + isin(t)] + (Z4=)[cos(—1) + isin(—1)

|
~
N
Do




(*5)[eos(t) + isin(t)] + (=25 )[cos(t) — isin(t)
(33)cos(t) + ()isin(t) 4 (}1)608() - (5 )isin(t)

H(5)eos(t) — (50)isin(t) + (5 )cos(t) — (5 )isin(t)
= (2)isin(t) + (SH)cos(t) + (L)isin(t) + (5)cos(t)

= —(3)sin(t) — (3)cos(t) — (3)sin(t) — (3)cos(t)

= —3sin(t) — leos(t)




Solve: y" +y =0, y(0) = —1, ¢y (0) = —3

r* +1 =0 implies 72 = —1. Thus r = +i.

RECOMMENDED Method:

Since r = 0+ 14, y = cicos(t) + casin(t)

Then i/ = —cysin(t) + cocos(t)

y(0) = —1:  —1 = c1c0s(0) + c35in(0) implies —1 = ¢;
y'(0) = —=3: =3 = —c15in(0) + cocos(0) implies —3 = ¢,
Thus IVP solution: y = —cos(t) — 3sin(t)



When does the following IVP have unique sol’'n:

IVP: ay” + by +cy =0, y(to) = yo, ¥'(to) = y1.

Suppose y = c1¢1(t) + caga(t) is a solution to ay” + by’ + cy = 0.
Then y' = 19 (1) + o5 (?)

y(to) = yo: Yo = c191(to) + c292(to)

y'(to) = y1: y1 = 19y (to) + cags(to)

To find IVP solution, need to solve above system of two equations
for the unknowns ¢y and cs.

Note the IVP has a unique solution if and only if the above system
of two equations has a unique solution for ¢; and cs.



Y(to) = Yo: Yo = c101(to) + capa(to)
y'(to) =y1: 1 = adi(to) + c20h(to)

Note that in these equations ¢; and ¢y are the unknowns and

Yo, P1(to), da(to), y1, & (to), dh(to) are the constants. We can
translate this linear system of equations into matrix form:

Note this equation has a unique solution if and only if



Definition: The Wronskian of two differential functions, ¢; and ¢ is

W(p1, 92) = P15 — P12 =



Definition: The Wronskian of two differential functions, ¢; and ¢ Is

O1 @

W(Qﬁl, @2) — ¢1¢,2 i ¢,1¢2 — ¢/1 ¢/2




HEIDIES
cos(t) sin(t)

1_) W(cos(t), 8’67’?/(75)) — _S@'n(t) cos(t)

= cos*(t) + sin(t) =1 > 0.



2.) W(e%cos(nt), esin(nt))
e“cos(nt) e sin(nt)

decos(nt) — nesin(nt)  de™sin(nt) + ne®cos(nt)

=ecos(nt)(de sin(nt)+necos(nt))—e sin(nt)(decos(nt)—net sin(nt))
—e?%[cos(nt)(dsin(nt)+ncos(nt))—sin(nt)(dcos(nt)—nsin(nt))]
=e2¥[dcos(nt)sin(nt)+ncos®(nt)—dsin(nt)cos(nt)+nsin?(nt)])

= e2®[ncos®(nt) + nsin®(nt)] = ne*[cos?(nt) + sin*(nt)]

— ne?® > ( for all t.
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