Existence and Uniqueness

+

Precalculus: Finding domain

example:
$$\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$$

By Dr. Isabel Darcy,
Dept of Mathematics and AMCS,
University of Iowa

2.4: Existence and Uniqueness

Thm 2.4.2: Suppose the functions

$$z=f(t,y)$$
 and $z=rac{\partial f}{\partial y}(t,y)$

are continuous on $(a,b) \times (c,d)$

and the point $(t_0,y_0)\in (a,b) imes (c,d)$,

then \exists an interval $(t_0 - h, t_0 + h) \subset (a, b)$ such that \exists ! function $y = \phi(t)$ defined on $(t_0 - h, t_0 + h)$ that satisfies the following initial value problem:

$$y' = f(t, y), y(t_0) = y_0.$$

$$z=f(t,y)$$
 and $z=rac{\partial f}{\partial y}(t,y)$

are continuous on $(a,b) \times (c,d)$ and the point $(t_0,y_0) \in (a,b) \times (c,d)$,

Section 2.4 example: $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$

$$z=f(t,y)$$
 and $z=rac{\partial f}{\partial y}(t,y)$

are continuous on $(a,b) \times (c,d)$

and the point $(t_0, y_0) \in (a, b) \times (c, d)$,

Section 2.4 example: $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$

 $f(t,y) = \frac{1}{(1-t)(2-y)}$ is continuous for all $t \neq 1$, $y \neq 2$

$$z=f(t,y)$$
 and $z=rac{\partial f}{\partial y}(t,y)$

are continuous on $(a,b)\times(c,d)$

and the point $(t_0, y_0) \in (a, b) \times (c, d)$,

Section 2.4 example: $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$

 $f(t,y) = \frac{1}{(1-t)(2-y)}$ is continuous for all $t \neq 1$, $y \neq 2$

$$\frac{\partial f}{\partial y} = \frac{\partial \left(\frac{1}{(1-t)(2-y)}\right)}{\partial y} = \frac{1}{(1-t)} \frac{\partial (2-y)^{-1}}{\partial y} = \frac{1}{(1-t)(2-y)^2}$$

 $\frac{\partial f}{\partial y}$ is continuous for all $t \neq 1$, $y \neq 2$

$$z=f(t,y) \text{ and } z=rac{\partial f}{\partial y}(t,y)$$

are continuous on $(a,b) \times (c,d)$ and the point $(t_0,y_0) \in (a,b) \times (c,d)$,

Section 2.4 example: $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$

 $f(t,y) = \frac{1}{(1-t)(2-y)}$ is continuous for all $t \neq 1$, $y \neq 2$

$$\frac{\partial f}{\partial y} = \frac{\partial \left(\frac{1}{(1-t)(2-y)}\right)}{\partial y} = \frac{1}{(1-t)} \frac{\partial (2-y)^{-1}}{\partial y} = \frac{1}{(1-t)(2-y)^2}$$

 $\frac{\partial f}{\partial y}$ is continuous for all t
eq 1, y
eq 2

Thus the IVP $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$, $y(t_0) = y_0$ has a unique solution if $t_0 \neq 1$, $y_0 \neq 2$.

2.4: Existence and Uniqueness

Thm 2.4.2: Suppose the functions

$$z=f(t,y)$$
 and $z=rac{\partial f}{\partial y}(t,y)$

are continuous on $(a,b) \times (c,d)$

and the point $(t_0, y_0) \in (a, b) \times (c, d)$,

then \exists an interval $(t_0 - h, t_0 + h) \subset (a, b)$ such that \exists ! function $y = \phi(t)$ defined on $(t_0 - h, t_0 + h)$ that satisfies the following initial value problem:

$$y' = f(t, y), y(t_0) = y_0.$$

Thm 2.4.2 implies

The IVP $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$, $y(t_0) = y_0$ has a unique solution if $t_0 \neq 1$, $y_0 \neq 2$.

Wolframalpha.com: $(1, 1/((1-t)(2-y)))/sqrt(1+1/((1-t)(2-y))^2)$

Thm 2.4.2 implies

The IVP $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$, $y(t_0) = y_0$ has a unique solution if $t_0 \neq 1$, $y_0 \neq 2$.

Wolframalpha.com: $(1, 1/((1-t)(2-y)))/sqrt(1+1/((1-t)(2-y))^2)$

But what else can we say about this DE?

If $y_0 = 2$, $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$, $y(t_0) = 2$ has two solutions if $t_0 \neq 1$ (and if we allow vertical slope in domain. Note normally our convention will be to NOT allow vertical slope in domain of solution).

Wolframalpha.com: $(1, 1/((1-t)(2-y)))/sqrt(1+1/((1-t)(2-y))^2)$

If
$$t_0 = 1$$
, $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$, $y(1) = y_0$ has no solutions.

Solve via separation of variables: $\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$

$$\int (2-y)dy = \int \frac{dt}{1-t}$$

$$2y - \frac{y^2}{2} = -\ln|1-t| + C$$

$$y^2 - 4y - 2\ln|1-t| + C = 0$$

$$y = \frac{4\pm\sqrt{16+4(2\ln|1-t|+C)}}{2} = 2\pm\sqrt{4+2\ln|1-t|+C}$$

$$y = 2\pm\sqrt{2\ln|1-t|+C}$$

IVP:
$$\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$$
, $y(0) = 1$

This IVP has a unique solution by thm 2.4.2.

General solution:
$$y = 2 \pm \sqrt{2ln|1 - t| + C}$$

Find C given
$$y(0) = 1$$
: $1 = 2 \pm \sqrt{2ln|1 - 0| + C}$

IVP:
$$\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$$
, $y(0) = 1$

This IVP has a unique solution by thm 2.4.2.

General solution:
$$y = 2 \pm \sqrt{2ln|1-t|+C}$$

Find C given
$$y(0) = 1$$
: $1 = 2 \pm \sqrt{2ln|1 - 0| + C}$

$$1 = 2 \pm \sqrt{C}$$

$$-1 = \pm \sqrt{C}$$

$$-1 = -\sqrt{C}$$
. Thus $C = 1$

IVP solution:
$$y = 2 - \sqrt{2ln|1 - t| + 1}$$

IVP solution: $y = 2 - \sqrt{2ln|1 - t| + 1}$

Find domain:

NOTE: the convention in this class is to choose largest possible connected domain where tangent line to solution is never vertical.

Can't take square root of negative number:

Domain of ln is positive reals:

Cannot divide by 0:

IVP:
$$\frac{dy}{dt} = \frac{1}{(1-t)(2-y)}$$
, $y(0) = 1$

Wolframalpha.com: $(1, 1/((1-t)(2-y)))/sqrt(1+1/((1-t)(2-y))^2)$

NOTE: the convention in this class is to choose largest possible connected domain where tangent line to solution is never vertical.

IVP solution: $y = 2 - \sqrt{2ln|1 - t| + 1}$

Find domain:

NOTE: the convention in this class is to choose largest possible connected domain where tangent line to solution is never vertical.

Can't take square root of negative number:

Domain of ln is positive reals:

Cannot divide by 0:

IVP solution:
$$y = 2 - \sqrt{2ln|1 - t| + 1}$$

Find domain:

NOTE: the convention in this class is to choose largest possible connected domain where tangent line to solution is never vertical.

Can't take square root of negative number:

$$2ln|1-t|+1>0$$

Domain of \overline{ln} is positive reals: $|1-t|>0 \Rightarrow t\neq 1$

Cannot divide by 0: Not Applicable to this problem.

$$2ln|1-t|+1>0$$

 $2ln|1-t| \ge -1$ implies

$$|ln|1-t| > -\frac{1}{2}$$

 $|1-t|>e^{-\frac{1}{2}}$ since e^t is an increasing function.

$$1-t<-e^{-\frac{1}{2}} \text{ or } 1-t>e^{-\frac{1}{2}}$$

$$-t < -e^{-\frac{1}{2}} - 1$$
 or $-t > e^{-\frac{1}{2}} - 1$

$$t > e^{-\frac{1}{2}} + 1$$
 or $t < -e^{-\frac{1}{2}} + 1$

Since IVP is y(0) = 1, t = 0 must be in domain:

$$2ln|1-t|+1>0$$

 $2ln|1-t| \ge -1$ implies

$$|ln|1-t| > -\frac{1}{2}$$

 $|1-t|>e^{-\frac{1}{2}}$ since e^t is an increasing function.

$$1-t<-e^{-\frac{1}{2}} \text{ or } 1-t>e^{-\frac{1}{2}}$$

$$-t < -e^{-\frac{1}{2}} - 1$$
 or $-t > e^{-\frac{1}{2}} - 1$

$$t > e^{-\frac{1}{2}} + 1$$
 or $t < -e^{-\frac{1}{2}} + 1$

Since IVP is y(0) = 1, t = 0 must be in domain:

Thus
$$t < -e^{-\frac{1}{2}} + 1$$

IVP solution:
$$y = 2 - \sqrt{2ln|1 - t| + 1}$$

Find domain:

NOTE: the convention in this class is to choose largest possible connected domain where tangent line to solution is never vertical.

Can't take square root of negative number:

$$2ln|1-t|+1>0$$

Domain of \overline{ln} is positive reals: $|1-t|>0 \Rightarrow t\neq 1$

Cannot divide by 0: Not Applicable to this problem.

 $t \neq 1$ and $t < -e^{-\frac{1}{2}} + 1$ implies $t < -e^{-\frac{1}{2}} + 1$

Thus domain is $t < -e^{-\frac{1}{2}} + 1$

IVP solution:
$$y = 2 - \sqrt{2ln|1 - t| + 1}$$

with domain $(-\infty, -e^{-\frac{1}{2}}+1)$

Wolframalpha.com: $(1, 1/((1-t)(2-y)))/sqrt(1+1/((1-t)(2-y))^2)$