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2.4: Existence and Uniqueness

Thm 2.4.2: Suppose the functions
2= f(t,y) and z = 5 (t,y)
are continuous on (a,b) x (c,d)
and the point (g, 49) € (a,b) X (c,d),
then 3 an interval (t) — h,ty+ h) C (a,b) such that

3! function y = ¢(t) defined on (ty — h,ty + h) that
satisfies the following initial value problem:

y' = f(t,y), y(to) = wo.



Thm 2.4.2: Suppose the functions

z= f(t,y) and z = %(t,y)
are continuous on (a, b) x (¢, d)
and the point (g, 40) € (a,b) X (¢, d),

Section 2.4 example: ‘{%’ = (1_@1(2_9)




Thm 2.4.2: Suppose the functions

z= f(t,y) and z = %(t,y)
are continuous on (a, b) x (¢, d)
and the point (o, 40) € (a,b) X (¢, d),

Section 2.4 example: ‘{%’ = (1_@1(2_?7,)

f(t,y) = (1_t)1(2_y) is continuous for all t # 1, y # 2



Thm 2.4.2: Suppose the functions

z= f(t,y) and z = %(t,y)
are continuous on (a,b) x (¢, d)
and the point (Zg,y9) € (a,b) x (¢, d),

Section 2.4 example: ‘fi—i’ = (1_@1(2_?7,)

f(t,y)= (1—15)1 is continuous for all t #£ 1, y # 2

(2—y)
of _ a((l—t)l@—y)) _ _1 (2—y)~! _ 1
Oy Oy (1-t) Oy (1=t)(2—y)?
of - :
8—5 Is continuous for all t £ 1, y # 2



Thm 2.4.2: Suppose the functions

z= f(t,y) and z = %(t,y)
are continuous on (a,b) x (¢, d)
and the point (Zg,y9) € (a,b) x (¢, d),

Section 2.4 example: i—i’ = (1_@1(2_?7,)

f(t,y) = (1—15)1 is continuous for all ¢ #£ 1, y # 2

(2—y)
of _ Nome=) _ 1 02—y _ 1
2/ Oy (A=t 9y (1-1)(2-w)?
% Is continuous for all t £ 1, y # 2
Thus the IVP % = q—5— y(to) = yo has 2

unique solution if ty # 1, yy # 2.



2.4: Existence and Uniqueness

Thm 2.4.2: Suppose the functions

~ f(t,y) and = = 2L(t,y)
are continuous on (a,b) x (¢, d)

and the point (tg, yo) € (a,b) x (¢, d),

then 3 an interval (tg — h,ty+ h) C (a,b) such that
3! function y = ¢(t) defined on (ty — h,ty + h) that
satisfies the following initial value problem:

y = f(t,y), y(to) = vo.



Thm 2.4.2 implies

The IVP % = (l—t)l(Q—y)’ y(to) = yo has a unique
solution if to # 1, Yo # 2.
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Thm 2.4.2 implies

The IVP % = (l—t)l(Q—y)’ y(to) = yo has a unique
solution if to # 1, Yo # 2.

— ‘+ P o

. EY L R RN
e aala Y y T

vy

) o o R A e
W

P P

Wolframalpha.com: (1, l/(( - t)(— y)))sqrt(l—}— 1A= t)(2—3)2)

But what else can we say about this DE?



dr 1
|t Yoy = 2, d—;’ — ERICEDE y(to) — 2 has two
solutions if ¢ty = 1 (and if we allow vertical slope in
domain. Note normally our convention will be to

NOT allow vertical slope in domain of solution).
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Wolframalpha.com: (1, l/(( — t)(2 — -y)))sq:ft(l +1/((1 — £)(2 — y))?)

If to =1, dy = (1_t)1(2_y), y(1) = yo has no solutions.



: : : . dy 1
Solve via separation of variables: it — T=D@=y)

[@2—y)dy = [

2

Qy—%:—ln|1—t‘—|—c

y2—4y—2ln|1—t|—|—020

y = =V WHCITE) o4 /It 2l — ]+ C

y=2%+/2n|l —t|+C




.ody _
VP: %= L y(0)=1

This IVP has a unique solution by thm 2.4.2.

General solution: y = 2 + /2In|1 —t| + C

Find C given y(0) =1: 1=2+/2In|]1 - 0]+ C



.ody _
VP: %= L y(0)=1

This IVP has a unique solution by thm 2.4.2.

General solution: y = 2 + /2In|1 —t| + C

Find C given y(0) = 1: 1 =24 ,/2in|]1 - 0|+ C
1=2++C

~-1=4VC

—1=—-v/C. Thus C =1

IVP solution: y =2 — /2in|1 — | + 1




IVP solution: y =2 — /2In|l —¢| + 1
Find domain:

NOTE: the convention in this class is to
choose largest possible connected domain
where tangent line to solution is never vertical.

Can't take square root of negative number:

Domain of (n Is positive reals:

Cannot divide by 0:
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NOTE: the convention in this class is to
choose largest possible connected domain
where tangent line to solution is never vertical.



IVP solution: y =2 — /2In|l —¢| + 1
Find domain:

NOTE: the convention in this class is to
choose largest possible connected domain
where tangent line to solution is never vertical.

Can't take square root of negative number:

Domain of (n Is positive reals:

Cannot divide by 0:



IVP solution: y =2 — +/2In|1 —t| + 1
Find domain:

NOTE: the convention in this class is to
choose largest possible connected domain
where tangent line to solution is never vertical.

Can't take square root of negative number:
2in|1 —t|+1 >0

Domain of In is positive reals: |1 —¢| >0=1#1

Cannot divide by 0: Not Applicable to this problem.



2in|1 —t|+1 >0
2In|1 — t| > —1 implies
In|]1 —t| > —=
1 —¢| > e 2 since ¢’ is an increasing function.

1
orl —t >e 2

b=

1l —t < —e™
—t<—e‘%—1or—t>e_%—1
1 1

t>e 2+1lort< —e 2z2+1

Since IVP is y(0) =1, t = 0 must be in domain:



2in|1 —t|+1 >0
2In|1 — t| > —1 implies
In|]1 —t| > —=
1 —¢| > e 2 since ¢’ is an increasing function.

1
orl —t >e 2

b=

L — i —E
—t<—ez—lor—t>e2—1
t>e2+lort<—e7+1

Since IVP is y(0) =1, t = 0 must be in domain:

Thus t < —e 2 + 1



IVP solution: y =2 — +/2In|1 —t| + 1
Find domain:

NOTE: the convention in this class is to
choose largest possible connected domain
where tangent line to solution is never vertical.

Can't take square root of negative number:
2in|1 —t|+1 >0

Domain of In is positive reals: |1 —¢| >0=1#1

Cannot divide by 0: Not Applicable to this problem.



1

t#1andt < —e7z + 1 impliest < —e 2 4+ 1

Thus domain is ¢t < —e™z + 1

IVP solution: y =2 — /2in|1 —¢| + 1

with domain (—oo0, —e77 + 1)
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