Solving Bernoulli's equation

$$
y^{\prime}+p(t) y=g(t) y^{n}
$$

By Dr. Isabel Darcy,
Dept of Mathematics and AMCS, University of Iowa
2.4 Solve Bernoulli's equation,

$$
y^{\prime}+p(t) y=g(t) y^{n}
$$

If $n=0$, then $y^{\prime}+p(t) y=g(t)$ is linear.
If $n=1$, then $y^{\prime}+p(t) y=g(t) y$ is separable.

When $n \neq 0,1$, solve Bernoulli's by changing it to a linear equation. problem that you do not know how to solve into a problem that you do know how to solve?

The algorithm is NOT as important as the idea behind the algorithm.

Goal: Create linear equation, $w^{\prime}+P(t) w=G(t)$
2.4 Solve Bernoulli's equation when $n \neq 0,1$ by changing it to a linear equation

$$
y^{\prime}+p(t) y=g(t) y^{n}
$$

Goal: Create linear equation, $w^{\prime}+P(t) w=G(t)$
2.4 Solve Bernoulli's equation,

$$
y^{\prime}+p(t) y=g(t) y^{n}
$$

when $n \neq 0,1$ by changing it

$$
y^{-n} y^{\prime}+p(t) y^{1-n}=g(t)
$$

when $n \neq 0,1$ by changing it to a linear equation by substituting $v=y^{1-n}$
and noting that $v^{\prime}=(1-n) y^{-n} y^{\prime}$

Goal: Create linear equation, $w^{\prime}+P(t) w=G(t)$

Solve $t y^{\prime}+2 t^{-2} y=2 t^{-2} y^{5}$

Goal: Create linear equation, $w^{\prime}+P(t) w=G(t)$
Solve $t y^{\prime}+2 t^{-2} y=2 t^{-2} y^{5}$

$$
t y^{-5} y^{\prime}+2 t^{-2} y^{-4}=2 t^{-2}
$$

Let $v=y^{-4}$. Thus $v^{\prime}=-4 y^{-5} y^{\prime}$

$$
\begin{gathered}
-4 t y^{-5} y^{\prime}-8 t^{-2} y^{-4}=-8 t^{-2} \\
t v^{\prime}-8 t^{-2} v=-8 t^{-2}
\end{gathered}
$$

We now have a linear DE that we can solve for v

$$
t v^{\prime}-8 t^{-2} v=-8 t^{-2}
$$

Solve linear DE for v :
Make coefficient of $v^{\prime}=1$

$$
v^{\prime}-8 t^{-3} v=-8 t^{-3}
$$

Find integrating factor:
An antiderivative of $-8 t^{-3}$ is $4 t^{-2}$
Thus integrating factor is $u(t)=e^{\int-8 t^{-3} d t}=e^{4 t^{-2}}$.
Multiply equation by $e^{4 t^{-2}}$

$$
e^{4 t^{-2}} v^{\prime}-8 t^{-3} e^{4 t^{-2}} v=-8 t^{-3} e^{4 t^{-2}}
$$

$e^{4 t^{-2}} v^{\prime}-8 t^{-3} e^{4 t^{-2}} v=-8 t^{-3} e^{4 t^{-2}}$

$$
\begin{aligned}
\left(e^{4 t^{-2}} v\right)^{\prime} & =-8 t^{-3} e^{4 t^{-2}} \text { by PRODUCT rule. } \\
\int\left(e^{4 t^{-2}} v\right)^{\prime} d t & =-8 \int t^{-3} e^{4 t^{-2}} d t \\
e^{4 t^{-2}} v & =-8 \int t^{-3} e^{4 t^{-2}} d t
\end{aligned}
$$

Integrate RHS using substitution:

$$
\begin{aligned}
& \quad \text { Let } u=4 t^{-2} . \text { Then } d u=-8 t^{-3} d t \\
& e^{4 t^{-2}} v= \int e^{u} d u=e^{u}+C \\
& e^{4 t^{-2}} v= e^{4 t^{-2}}+C \\
& v= 1+C e^{-4 t^{-2}}
\end{aligned}
$$

$$
v=1+C e^{-4 t^{-2}}
$$

Solve $t y^{\prime}+2 t^{-2} y=2 t^{-2} y^{5}$
Recall $v=y^{-4}$.
$y^{-4}=1+C e^{-4 t^{-2}}$ implies $y= \pm\left(1+C e^{-4 t^{-2}}\right)^{-\frac{1}{4}}$

General solution: $y= \pm\left(1+C e^{-4 t^{-2}}\right)^{-\frac{1}{4}}$
OR $y=0$

