Quickly written notes:
2.2: example from week 3 video (slides 12-14) available at
http://homepage.math.uiowa.edu/~ idarcy/COURSES/100/SPRING22/videos.html
2.3: Modeling with differential equations.

Suppose salty water enters and leaves a tank at a rate of 6 liters/minute.
Suppose also that the salt concentration of the water entering the tank varies with respect to time according to $\frac{1}{(t+1)(t+2) e^{3 t}} \mathrm{~g} /$ liters where $Q(t)=$ amount of salt in tank in grams. If the tank contains 2 liters of water and initially contains 1 g of salt, find a formula for the amount of salt in the tank after t minutes.

Let $Q(t)=$ amount of salt in tank in grams. Note $Q(0)=1 \mathrm{~g}$
rate in $=(6$ liters $/ \mathrm{min})\left(\frac{1}{(t+1)(t+2) e^{3 t}} \mathrm{~g} /\right.$ liters $)=\frac{6}{(t+1)(t+2) e^{3 t}} \mathrm{~g} / \mathrm{min}$
rate out $=(6$ liters $/ \mathrm{min})\left(\frac{Q(t) g}{2 \text { liters }}\right)=3 Q \mathrm{~g} / \mathrm{min}$
$\frac{d Q}{d t}=$ rate in - rate out $=\frac{6}{(t+1)(t+2) e^{3 t}}-3 Q$
IVP: $\frac{d Q}{d t}=\frac{6}{(t+1)(t+2) e^{3 t}}-3 Q, \quad Q(0)=1$
$Q^{\prime}=\frac{6}{(t+1)(t+2) e^{3 t}}-3 Q$
$Q^{\prime}+3 Q=\frac{6}{(t+1)(t+2) e^{3 t}}$
$u(t)=e^{\int 3 d t}=e^{3 t}$
$e^{3 t} Q^{\prime}+3 e^{3 t} Q=\frac{6 e^{3 t}}{e^{3 t}(t+1)(t+2)}$
$\left(e^{3 t} Q\right)^{\prime}=\frac{6}{(t+1)(t+2)}$
$\int\left(e^{3 t} Q\right)^{\prime} d t=\int \frac{6}{(t+1)(t+2)} d t$
$e^{3 t} Q=\int \frac{6}{(t+1)(t+2)} d t$
Partial fractions: $\frac{6}{(t+1)(t+2)}=\frac{A}{t+1}+\frac{B}{t+2}$
$6=A(t+2)+B(t+1)$

Method 1: choose 2 values for t to solve for the 2 variables.

$$
t=-1: 6=A \quad t=-2: 6=-B
$$

Method 2: use linear independence.
$0 t+6=(A+B) t+2 A+B$
$A+B=0$, thus $B=-A$
$2 A+B=6$. Thus $2 A-A=A=6$ and $B=-6$
Hence $\frac{6}{(t+1)(t+2)}=\frac{6}{t+1}+\frac{-6}{t+2}$
$e^{3 t} Q=\int \frac{6}{(t+1)(t+2)} d t=\int \frac{6}{t+1} d t+\int \frac{-6}{t+2} d t$
$e^{3 t} Q=6 \ln |t+1|-6 \ln |t+2|+C$
$Q=6 e^{-3 t} l n|t+1|-6 e^{-3 t} l n|t+2|+C e^{-3 t}$
Initial value: $Q(0)=1$
$1=6 \ln |1|-6 \ln |2|+C$
$C=1+6 \ln (2)$
$Q=6 e^{-3 t} \ln |t+1|-6 e^{-3 t} \ln |t+2|+(1+6 \ln (2)) e^{-3 t}$
Long-term behaviour:
As $t \rightarrow \infty, 6 e^{-3 t} \ln |t+1|-6 e^{-3 t} \ln |t+2|+(1+6 \ln (2)) e^{-3 t} \rightarrow 0$
You know the limit is 0 using any of the 3 methods below:
1.) Note the salt concentration entering the tank goes to 0 as $t \rightarrow+\infty$
2.) Note that the exponential function goes to 0 much faster than the logarithm function goes to $+\infty$ as $t \rightarrow+\infty$
3.) Use l'hopital's rule. For example,
$\lim _{t \rightarrow \infty} 6 e^{-3 t} \ln |t+1|$
$\lim _{t \rightarrow \infty} 6 \frac{\ln |t+1|}{e^{3 t}}=\lim _{t \rightarrow \infty} 6 \frac{\frac{1}{t+1}}{3 e^{3 t}}=\lim _{t \rightarrow \infty} \frac{6}{3(t+1) e^{3 t}}=0$

