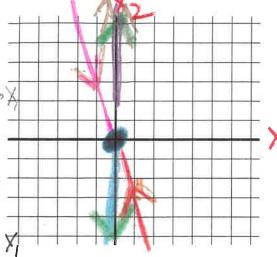
Given that the solution to to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ Example 1:

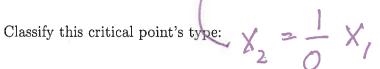
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$$

$$\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t} +$$

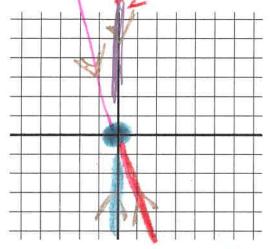


The equilibrium solution for this system of equations is

This equilibrium solution is (choose one): asymptotically stable or unstable



Example 2: Given that the solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$



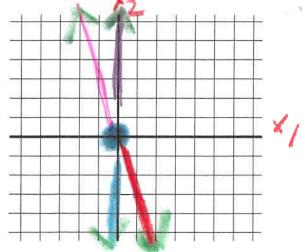
The equilibrium solution for this system of equations is

This equilibrium solution is (choose one):

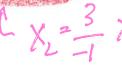
asymptotically stable or unstable

Classify this critical point's type:

Given that the solution to $\mathbf{x}' = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$



The equilibrium solution for this system of equations is

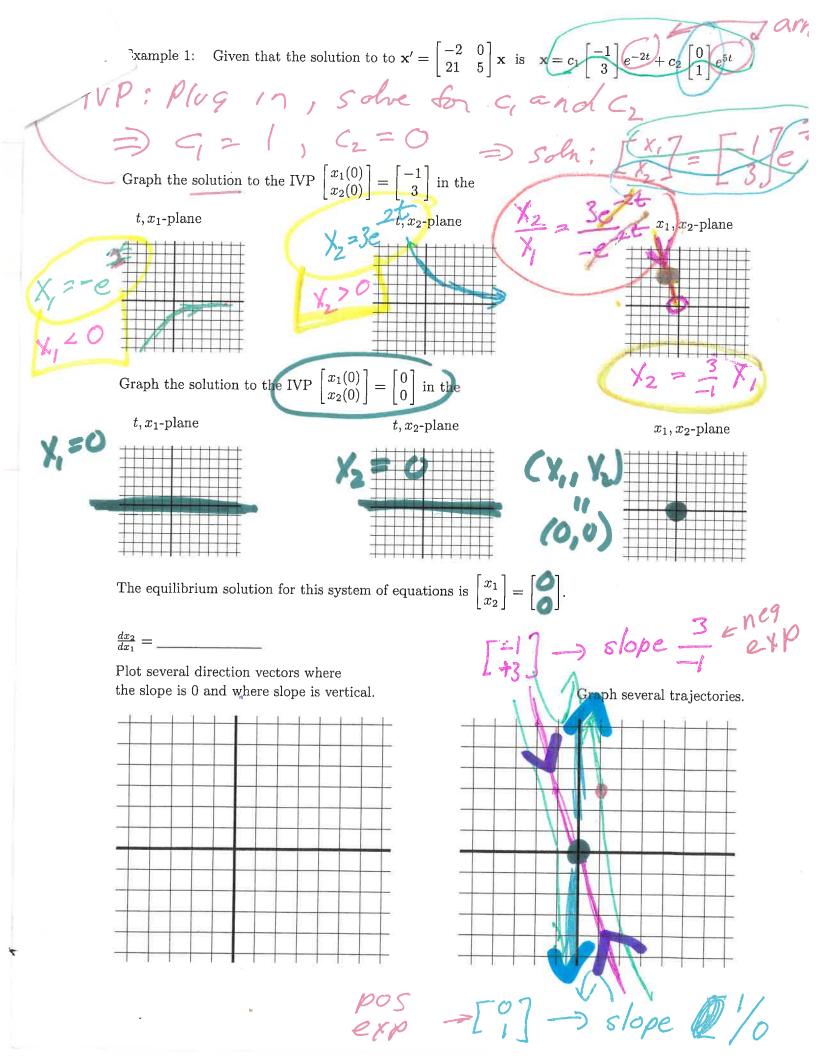


This equilibrium solution is (choose one):

asymptotically stable or unstable

Classify this critical point's type:

X = - X



Remi-generic ex: Given that the solution to to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$

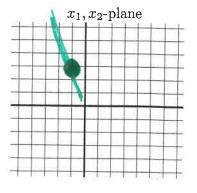
IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 implies $c_1 = 1, c_2 = 0$. Thus IVP soln: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_1 t}$$

Hence $x_1 = -e^{r_1 t} < 0$ and $x_2 = 3e^{r_1 t} > 0$

and
$$\frac{x_2}{x_1} = \frac{3e^{r_1t}}{-e^{r_1t}} = \frac{3}{-1}$$
. Thus $x_2 = \frac{3}{-1}x_1$.

https://www.geogebra.org/3d $(t, -e \land (-2t), 3*e \land (-2t))$

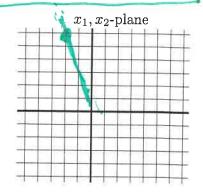


IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix}$$
 implies $c_1 = 2, c_2 = 0$. Thus IVP soln: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_1 t}$

Hence $x_1 = -2e^{r_1t} < 0$ and $x_2 = 6e^{r_1t} > 0$

and
$$\frac{x_2}{x_1} = \frac{6e^{r_1t}}{-2e^{r_1t}} = \frac{3}{-1}$$
. Thus $x_2 = \frac{3}{-1}x_1$.

https://www.geogebra.org/3d $(t, -2*e \land (-2t), 6*e \land (-2t))$

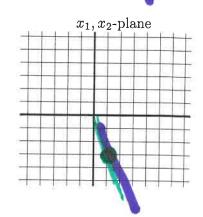


IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
 implies $c_1 = -1, c_2 = 0$. Thus IVP soln: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -\begin{bmatrix} 1 \\ x_3 \end{bmatrix} e^{r_1 t}$

Hence $x_1 = e^{r_1 t} > 0$ and $x_2 = -3e^{r_1 t} < 0$

and
$$\frac{x_2}{x_1} = \frac{3e^{r_1t}}{-e^{r_1t}} = \frac{-3}{1}$$
. Thus $x_2 = \frac{-3}{1}x_1$.

https://www.geogebra.org/3d (t, $e \land (-2t)$, $-3*e \land (-2t)$)



Semi-generic ex: Given that the solution to to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_2 t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$

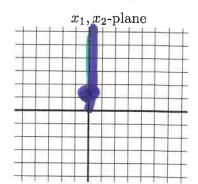
IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 implies $c_1 = 0, c_2 = 1$. Thus IVP soln: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$

Thus IVP soln:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$$

Hence
$$x_1 = 0$$
 and $x_2 = e^{r_2 t} > 0$

and
$$\frac{x_2}{x_1} = \frac{1e^{r_2t}}{0e^{r_2t}} = \frac{1}{0}$$
. Thus $x_2 = \frac{1}{0}x_1$.

 $https://www.geogebra.org/3d \qquad (t,\,0,\,e \wedge (5t))$



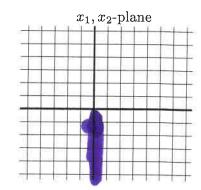
IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
 implies $c_1 = 0, c_2 = -1$. Thus IVP soln: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -\begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$

Thus IVP soln:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = - \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2}$$

Hence $x_1 = 0$ and $x_2 = -e^{r_2 t} < 0$

and
$$\frac{x_2}{x_1} = \frac{-1e^{r_2t}}{0e^{r_2t}} = \frac{-1}{0}$$
. Thus $x_2 = \frac{-1}{0}x_1$.

https://www.geogebra.org/3d $(t, 0, -e \land (5t))$

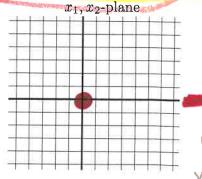


IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 implies $c_1 = c_2 = 0$.

Thus IVP soln:
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Hence $x_1 = 0$ and $x_2 = 0$

https://www.geogebra.org/3d (t, 0, 0)



$$x_{1}(t) = 0$$
 $x_{2}(t) = 0$

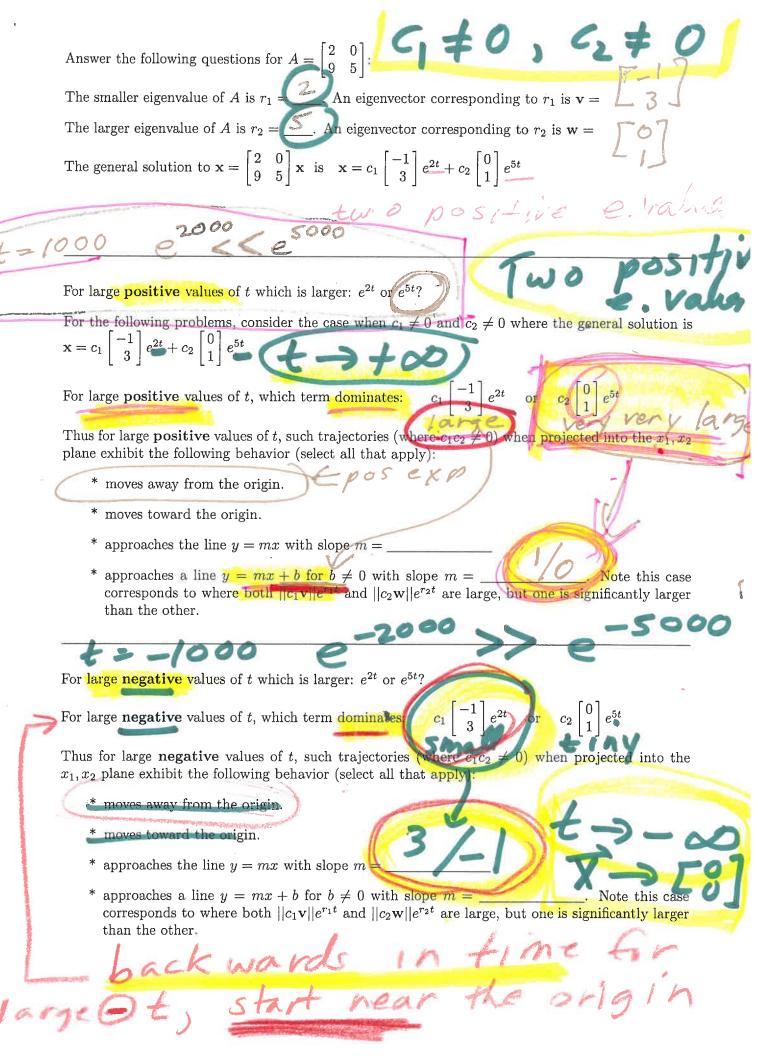
 $X_1(t) = 0$ constant som $X_2(t) = 0$ constant som $X_2(t) = 0$ is a som $X_1(t) = 0$ is an equil som $X_2(t) = 0$ $X_1(t) = 0$ is a som $X_2(t) = 0$ is an equil som

values Two real [1] -> - slave [3]つるらかっ c, to and cz t

	Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix}$:
	The smaller eigenvalue of A is $r_1 = 2$. An eigenvector corresponding to r_1 is $\mathbf{v} = 2$.
	The larger eigenvalue of A is $r_2 = $ An eigenvector corresponding to r_2 is $\mathbf{w} = $
	The general solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$
	5 4-3+00 0-2+ n
	For large positive values of t which is larger: e^{-2t} or e^{5t} ?
	For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$.
	For large positive values of t , which term dominates: $c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$ or $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
	Thus for large positive values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2
	plane exhibit the following behavior (select all that apply):
	* moves away from the origin. F POSITIVE EXP
	* moves toward the origin.
	* approaches the line $y = mx$ with slope $m = 1$
	* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = $ Note this case corresponds to where both $ c_1\mathbf{v} e^{r_1t}$ and $ c_2\mathbf{w} e^{r_2t}$ are large, but one is significantly larger than the other.
	2000 -5000
	00 e >> e
	For large negative values of t which is larger: e^{-2t} or e^{5t} ?
,	For large negative values of t, which term dominates: $c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$ of $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$?
/	Thus for large negative values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the
	x_1, x_2 plane exhibit the following behavior (select all that apply):
	* moves away from the origin to the wards in this expenses toward the origin.
	* moves toward the origin.
	* moves toward the origin. * approaches the line $y = mx$ with slope $m = 3$

e. value [0] Deges
Value

position
expone [3] 3 slope -1 e. vahe negative exponential W X-> [:] ast + top arrow points towards the origin



e. valus [1]29 [-1] = 3 slope X= 5 [3 + 5 [1] x → 2 bi] + 2[i] Tapprox o slope sine [o]est dominates astat oo eyponentials 90 positive away

Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix}$: The smaller eigenvalue of A is $r_1 = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Γ97
The larger eigenvalue of A is $r_2 = \frac{2}{100}$. An eigenvector corresponding to r_2 is $\mathbf{w} = \frac{2}{100}$	F-17
The general solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$	$\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

= 1000

For large **positive** values of t which is larger: e^{-5t} or e^{-2t} ?

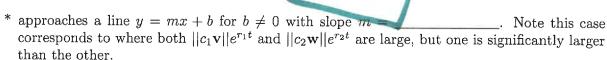
For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t},$

For large **positive** values of t, which term dominates:

$$c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t}$$
 or $c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$

Thus for large positive values of t, such trajectories (where $c_1c_2 \neq 0$) when proplane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- moves toward the origin.
- approaches the line y = mx with slope m



For large **negative** values of t which is larger: e^{-5t} or e^{-2t} ?

For large negative values of t, which term dominates

Thus for large negative values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- moves away from the origin
- * moves toward the origin.
- * approaches the line y = mx with slope m =
- * approaches a line y = mx + b for $b \neq 0$ with slope m = bNote this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

e. values [i] > dslop [3] = 3 slope negative expontial go towards the origin

$$\begin{bmatrix} X_1' \\ X_2' \end{bmatrix} = \begin{bmatrix} 2 & G \\ 9 & 5 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

 $x_1' = 2x_1$ $x_2' = 9x_1 + 5x_2$

 $\frac{\chi_{2}'}{\chi_{1}'} = \frac{d\chi_{2}/dx}{d\chi_{1}} = \frac{d\chi_{2}}{d\chi_{1}} = \frac{9\chi_{1}+5\chi_{2}}{2\chi_{1}}$