

Semi-generic ex: Given that the solution to to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$

IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 implies $c_1 = 1, c_2 = 0$, Thus IVP soln: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_1 t}$$

Hence $x_1 = -e^{r_1 t} < 0$ and $x_2 = 3e^{r_1 t} > 0$

and
$$\frac{x_2}{x_1} = \frac{3e^{r_1t}}{-e^{r_1t}} = \frac{3}{-1}$$
. Thus $x_2 = \frac{3}{-1}x_1$.

https://www.geogebra.org/3d (t, $-e \land (-2t)$, $3*e \land (-2t)$)

IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix}$$
 implies $c_1 = 2, c_2 = 0$. Thus IVP soln: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_1 t}$

Hence $x_1 = -2e^{r_1t} < 0$ and $x_2 = 6e^{r_1t} > 0$

and $\frac{x_2}{x_1} = \frac{6e^{r_1t}}{-2e^{r_1t}} = \frac{3}{-1}$. Thus $x_2 = \frac{3}{-1}x_1$.

https://www.geogebra.org/3d $(t, -2*e \land (-2t), 6*e \land (-2t))$

IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
 implies $c_1 = -1, c_2 = 0$. Thus IVP soln: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -\begin{bmatrix} 1 \\ -3 \end{bmatrix} e^{r_1 t}$

Hence $x_1 = e^{r_1 t} > 0$ and $x_2 = -3e^{r_1 t} < 0$

and $\frac{x_2}{x_1} = \frac{3e^{r_1t}}{-e^{r_1t}} = \frac{-3}{1}$. Thus $x_2 = \frac{-3}{1}x_1$.

https://www.geogebra.org/3d (t, $e \land (-2t)$, $-3*e \land (-2t)$)

Semi-generic ex: Given that the solution to to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_2 t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$

IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 implies $c_1 = 0, c_2 = 1$. Thus IVP soln: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$

Thus IVP soln:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$$

Hence
$$x_1 = 0$$
 and $x_2 = e^{r_2 t} > 0$

and
$$\frac{x_2}{x_1} = \frac{1e^{r_2t}}{0e^{r_2t}} = \frac{1}{0}$$
. Thus $x_2 = \frac{1}{0}x_1$.

https://www.geogebra.org/3d
$$(t, 0, e \land (5t))$$

IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
 implies $c_1 = 0, c_2 = -1.$ Thus IVP soln: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -\begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$

Thus IVP soln:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = - \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2}$$

Hence $x_1 = 0$ and $x_2 = -e^{r_2 t} < 0$

and
$$\frac{x_2}{x_1} = \frac{-1e^{r_2t}}{0e^{r_2t}} = \frac{-1}{0}$$
. Thus $x_2 = \frac{-1}{0}x_1$.

https://www.geogebra.org/3d
$$(t, 0, -e \land (5t))$$

IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 implies $c_1 = c_2 = 0$.

Thus IVP soln:
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Hence $x_1 = 0$ and $x_2 = 0$

https://www.geogebra.org/3d

 $X = c_1 \left[\frac{1}{3} \right] e^{r_1 t} + c_2 \left[\frac{1}{3} \right] e^{r_2 t}$

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ in the

 t, x_1 -plane

 t, x_2 -plane

 x_1, x_2 -plane

- Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the
 - t, x_1 -plane

 t, x_2 -plane

 x_1, x_2 -plane

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix}$.

 $\frac{dx_2}{dx_1} =$

Plot several direction vectors where the slope is 0 and where slope is vertical. $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix}.$

Graph several trajectories.

negative e, values

= negative e

e x ponentials I

I'3

1/0

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

The equilibrium solution for this system of equations is
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} O \\ O \end{bmatrix}$$
.

$$\frac{dx_2}{dx_1} =$$

Graph several trajectories.

	Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix}$:
	The smaller eigenvalue of A is $r_1 = \frac{1}{2}$. An eigenvector corresponding to r_1 is $\mathbf{v} = \frac{1}{2}$.
	The larger eigenvalue of A is $r_2 = 5$. An eigenvector corresponding to r_2 is $\mathbf{w} = 70$
	The general solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$
	For large positive values of t which is larger: e^{-2t} or e^{5t} ? For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$.
	For large positive values of t , which term dominates: $c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$ or $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$
	Thus for large positive values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):
	* moves away from the origin. * positive exp
	* moves toward the origin.
	* approaches the line $y = mx$ with slope $m = $
	* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = $ Note this case corresponds to where both $ c_1\mathbf{v} e^{r_1t}$ and $ c_2\mathbf{w} e^{r_2t}$ are large, but one is significantly larger than the other.
-	2000 _5000
= 10	For large negative values of t which is larger: e^{-2t} or e^{5t} ?
	Association (Contraction of the Contraction of the
	For large negative values of t, which term dominates: $c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$ or $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$?
	Thus for large negative values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):
	* moves away from the origin. * moves toward the origin. * moves toward the origin.
	* moves toward the origin.
	* approaches the line $y = mx$ with slope $m = $
	* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = \underline{\hspace{1cm}}$. Note this case corresponds to where both $ c_1\mathbf{v} e^{r_1t}$ and $ c_2\mathbf{w} e^{r_2t}$ are large, but one is significantly larger than the other.

ne -e. valu # saddle

Answer the following questions for $A = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix}$:
The smaller eigenvalue of A is $r_1 = \frac{2}{3}$. An eigenvector corresponding to r_1 is $\mathbf{v} = \frac{2}{3}$
The larger eigenvalue of A is $r_2 = 5$. An eigenvector corresponding to r_2 is $w = 67$
The general solution to $\mathbf{x} = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$
t=1000 e2000 e5000 positive e. value
t=1000
For large positive values of t which is larger: e^{2t} or e^{5t} ?
For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$
For large positive values of t , which term dominates: $c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$ or $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$
Thus for large positive values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):
* moves away from the origin.
* moves toward the origin.
* approaches the line $y = mx$ with slope $m = $
* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
-2000 >> -500
For large negative values of t which is larger: e^{2t} or e^{5t} ?
For large negative values of t , which term dominates: $c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$ or $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$
Thus for large negative values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):
* moves away from the origin.
* moves toward the origin.
* approaches the line $y = mx$ with slope $m = $
* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = $ Note this case corresponds to where both $ c_1\mathbf{v} e^{r_1t}$ and $ c_2\mathbf{w} e^{r_2t}$ are large, but one is significantly larger than the other.

Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix}$:
The smaller eigenvalue of A is $r_1 = \underline{\hspace{1cm}}$. An eigenvector corresponding to r_1 is $\mathbf{v} = \underline{\hspace{1cm}}$
The larger eigenvalue of A is $r_2 = 2$. An eigenvector corresponding to r_2 is $\mathbf{w} = 2$.
The general solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$
t=1000 e-5000 l e-2000 e larger
For large positive values of t which is larger: e^{-5t} or e^{-2t} ?
For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is
$\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t},$
For large positive values of t , which term dominates: $c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t}$ or $c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$? Thus for large positive values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2
Thus for large positive values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):
* moves away from the origin.
* moves toward the origin.
* approaches the line $y = mx$ with slope $m = $
* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = $ Note this case corresponds to where both $ c_1\mathbf{v} e^{r_1t}$ and $ c_2\mathbf{w} e^{r_2t}$ are large, but one is significantly larger than the other.
1-1000 -000 - 2
For large negative values of t which is large: e^{-5t} or e^{-2t} ?
For large negative values of t, which term dominates: $c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t}$ or $c_2 \begin{bmatrix} -1 \\ 2 \end{bmatrix} e^{-2t}$?

Thus for large negative values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the

 x_1, x_2 plane exhibit the following behavior (select all that apply):

* moves away from the origin.

- * moves toward the origin.
- * approaches the line y = mx with slope m = 1
- * approaches a line y = mx + b for $b \neq 0$ with slope $m = \underline{\hspace{1cm}}$. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

e. valus Two displaced large+ very large behav of 5/000 large