3. Solve the initial value problem (where $t>0): \quad t y^{\prime}+y=\sin t, y\left(\frac{\pi}{2}\right)=1$.

From $t y^{\prime}+y=\sin t$, one can immediately go to the product rule step:

$$
(t y)^{\prime}=\sin t \quad \text { Check product rule }(t y)^{\prime}=t y^{\prime}+y
$$

If you didn't notice the product rule:
$1 y^{\prime}+\frac{1}{t} y=\frac{\operatorname{sint}}{t}$
Integrating factor $u(t)=e^{\int \frac{d t}{t}}=e^{\ln (t)}=t$
Multiply BOTH sides by integrating factor:
$t y^{\prime}+y=\sin t$
$(t y)^{\prime}=\sin t$
$\int(t y)^{\prime} d t=\int \sin t d t$
$t y=-\cos (t)+C$.
Plug in initial value, $y\left(\frac{\pi}{2}\right)=1$:
$\left(\frac{\pi}{2}\right)(1)=-\cos \left(\frac{\pi}{2}\right)+C \Rightarrow\left(\frac{\pi}{2}\right)(1)=0+C$. Thus $C=\frac{\pi}{2}$
Hence $t y=-\cos (t)+\frac{\pi}{2}$ and $y=-\frac{\cos (t)}{t}+\frac{\pi}{2 t}$
NOTE: normally I would take off for not simplifying a fraction within a fraction. I didn't this time, but will in the future.

Answer: $y=-\frac{\cos (t)}{t}+\frac{\pi}{2 t}$
a. A 50 gallon tank contains 3 grams of Kryptonite. 8 gallons of water containing 2 grams of Krypotonite is pumped into the tanke every minute, and 8 gallons of solution is drained from the tank every minute. Assuming a thorough mixing, setup the initial value problem that describes this process. (Do not solve!)

Diff. eqn: \qquad . Initial Value: \qquad .
b. Calculate the Wronskian $W\left(t^{-\frac{1}{2}}, t^{2}\right)=$ \qquad
c. Give the form of the particular (nonhomogenous) solution with undetermined coefficients for

$$
y^{\prime \prime}+5 y^{\prime}+4 y=2 \cos (t)
$$

$Y(t)=$ \qquad (Do not solve!)
d. The general solution for $y^{\prime \prime}-y=0$ is \qquad
e. The general solution for $y^{\prime \prime}+9 y=0$ is \qquad -.

