3. Solve the initial value problem (where t > 0): $ty' + y = \sin t$, $y(\frac{\pi}{2}) = 1$. From $ty' + y = \sin t$, one can immediately go to the product rule step:

(ty)' = sint Check product rule (ty)' = ty' + y.

If you didn't notice the product rule:

 $1y' + \frac{1}{t}y = \frac{sint}{t}$

Integrating factor $u(t) = e^{\int \frac{dt}{t}} = e^{\ln(t)} = t$

Multiply BOTH sides by integrating factor:

 $ty' + y = \sin t$ (ty)' = sint $\int (ty)'dt = \int sintdt$ ty = -cos(t) + C.Plug in initial value, $y(\frac{\pi}{2}) = 1$: $(\frac{\pi}{2})(1) = -cos(\frac{\pi}{2}) + C \Rightarrow (\frac{\pi}{2})(1) = 0 + C.$ Thus $C = \frac{\pi}{2}$

Hence $ty = -\cos(t) + \frac{\pi}{2}$ and $y = -\frac{\cos(t)}{t} + \frac{\pi}{2t}$

NOTE: normally I would take off for not simplifying a fraction within a fraction. I didn't this time, but will in the future.

Answer: $y = -\frac{\cos(t)}{t} + \frac{\pi}{2t}$

a. A 50 gallon tank contains 3 grams of Kryptonite. 8 gallons of water containing 2 grams of Krypotonite is pumped into the tanke every minute, and 8 gallons of solution is drained from the tank every minute. Assuming a thorough mixing, setup the initial value problem that describes this process. (Do not solve!)

Diff. eqn: . Initial Value:	Diff. eqn: . Initial Value:	
-----------------------------	-----------------------------	--

b. Calculate the Wronskian $W(t^{-\frac{1}{2}}, t^2) =$ ______.

c. Give the **form** of the particular (nonhomogenous) solution with undetermined coefficients for

 $y'' + 5y' + 4y = 2\cos(t)$

Y(t) = (Do not solve!)

d. The general solution for y'' - y = 0 is ______

e. The general solution for y'' + 9y = 0 is ______