

$$
m a, m g-\gamma^{\prime} v
$$

Direction field
ex: $m=10, r=2$

$$
\Rightarrow v^{\prime}=9.8-\frac{v}{5}
$$

Are there any equilibrium sols?
Equilibriumsoln 三A constant $\begin{gathered}\text { son } \\ \text { son }\end{gathered}$

$$
V=c \quad \Longleftrightarrow \quad V^{\prime}=0
$$

To find e jul show, set $v^{\prime}=0$

$$
\begin{aligned}
& v^{\prime}=9,8-\frac{v}{5} \text {. If } v^{\prime}=0 \Rightarrow 0=9,8-\frac{v}{5} \\
& \Rightarrow \frac{v}{c}=9,8 \Rightarrow v=(9,8)(5)=49
\end{aligned}
$$

2020_08_26math3600.pdf Page 1

$$
\Rightarrow \frac{v}{5}=9,8 \Rightarrow V=\underline{(7,8)(5)}=47
$$

Equal sots is $V=49$
Check by plugging in $v^{\prime}=9.8-\frac{U}{5}$

$$
v=49 \Rightarrow v^{\prime}=0 \quad 0 \quad \stackrel{?}{=} 9.8-\frac{49}{5}
$$

Direction field
small portion

does not depend on t

$$
1.2=2.2 \text { : solving } D E \text { via }
$$

separation of variables

$$
d t\left(\frac{d v}{d t}\right)=\left(9.8-\frac{v}{5}\right) d t
$$

$$
X_{r}(d v)=\left(\left(\begin{array}{r}
\left.\left.9 \cdot 8-\frac{v}{5}\right) d t\right) \neq \\
r
\end{array}\right.\right.
$$

$$
\begin{aligned}
& S(d v)=\left[\left(9.8-\frac{v}{5}\right) d t\right] 5 \\
& \frac{5 d v}{(49-v)}=\frac{(4 q-v) \cdot d t}{(4 q-v)} \\
& \int\left(\frac{5}{49-v}\right)(d v)=\int 1 d t \\
& \text { Separation } \\
& \text { varialls } \\
& \text { means. } \\
& \text { turn into } \\
& \text { calc } 1 \\
& \text { problem } \\
& \text { so } d v \& d t \\
& \text { are nerer } \\
& \text { check denominater } \\
& -5 \ln |49-v|^{+}=t+C \\
& \text { sōue for } V \text { : } \\
& \ln |49-r|=\frac{-t}{5}+\underset{i}{C} H\left(\begin{array}{c}
\text { slopey } \\
\text { is sood! } \\
\frac{c}{c} \text { isa } \\
-5 \\
\text { constan }
\end{array},\right.
\end{aligned}
$$

e
in our class
don't need

$$
\begin{aligned}
& \text { to worry about } \\
& \text { losing or }
\end{aligned}
$$

velocity rs time
gaining soling initial value problem (IVP)

$$
\begin{aligned}
& \begin{array}{l}
e^{\overline{5}} \\
e^{-t / 5+c}
\end{array} \\
& =e^{-t / 5}\left(e^{c}\right) \\
& |49-r|=C e^{-t / s} \\
& 49-v=(\text { 表 } c) e^{-t / 5} \\
& 49^{-49} v=C e^{-t / 5}-49 \\
& -(-V)=-\left(C e^{-t / 5}-49\right) \\
& V=C e^{-t / s}+49
\end{aligned}
$$

DE: $\quad V^{\prime}=9.8-\frac{v}{5}$
initial value: $V\left(t_{0}\right)=V_{0}$
EXample: $v(0)=0$
For example, if drop ball, $v(0)=0$
Solve IVP
(1) Solve $D E$ for general sol' M

$$
v=49-C e^{-t / 5} \leftrightarrow \sqrt{v}=e^{-t / 5}+49
$$

(2) Plug in initial value to find C

$$
\begin{aligned}
& v(0)=0 \Rightarrow t=0, v=0 \\
& 2 x=0 \\
& 0=C e^{0}+49 \\
& 0=C+49 \Rightarrow C=-49 \\
& \text { IVP sol: } \quad V=-49 e^{-t / s}+49
\end{aligned}
$$ graph the sold:

$$
\rightarrow \frac{1-\sqrt{-4 e^{-t / 3}}}{}
$$

$$
\begin{gathered}
e^{-t / 5} \rightarrow 0 \text { as } t \rightarrow \infty \\
v \rightarrow 0+49=49 \text { as } t \rightarrow \infty
\end{gathered}
$$

Direction field
Long-term beharioun $t \rightarrow+\infty \quad$ a $\quad t \rightarrow-\infty$,

$$
\text { as }+\rightarrow+\infty
$$

$$
v \rightarrow 49
$$

$$
\text { is } t \rightarrow-\infty
$$

If $v_{0}>49$

$$
v \rightarrow+\infty
$$

If $v_{0}<4 \zeta, v \rightarrow-\infty$

