[3] 1.) Write the following in the form $u(t)=R \cos (b t-\delta)$

$$
u(t)=2 \sqrt{3} \cos (2 t)-2 \sin (2 t)=
$$

\qquad

[3] 2.) If $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are homogeneous solutions to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$, then a non-homogeneous solution to this second order linear differential equation is

$$
y(t)=
$$

\qquad
where $u_{1}(t)=$ \qquad and $u_{2}(t)=$ \qquad
[4] 3.) A spring mass system has a spring constant of $3 \mathrm{~N} / \mathrm{m}$. A mass of 4 kg is attached to the spring. The system is driven by an external force of $\sin (3 \mathrm{t}) \mathrm{N}$. The spring is streched 5 m and then set in motion with a downward velocity of $2 \mathrm{~m} / \mathrm{s}$. Assume that there is no damping. State the initial value problem that describes the motion of this mass. Do NOT solve.

IVP: \qquad
[10] 4.) Solve $y^{\prime \prime}-4 y=-12+8 e^{2 t}, \quad y(0)=3, y^{\prime}(0)=6$.
[3] 1.) Write the following in the form $u(t)=R \cos (b t-\delta)$

$$
u(t)=2 \cos (2 t)-2 \sqrt{3} \sin (2 t)=
$$

\qquad

[3] 2.) If $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are homogeneous solutions to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$, then a non-homogeneous solution to this second order linear differential equation is

$$
y(t)=
$$

\qquad
where $u_{1}(t)=$ \qquad and $u_{2}(t)=$ \qquad
[4] 3.) A 10 kg mass stretches a spring 5 m . The mass is acted on by an external force of $6 \cos (3 \mathrm{t}) \mathrm{N}$. The spring is compressed 4 m and then set in motion with an upward velocity of $2 \mathrm{~m} / \mathrm{s}$. Assume that there is no damping. State the initial value problem that describes the motion of this mass. Do NOT solve.

IVP: \qquad
[10] 4.) Solve $y^{\prime \prime}+4 y=8+\sin (2 t), \quad y(0)=4, y^{\prime}(0)=1$.
[3] 1.) Write the following in the form $u(t)=R \cos (b t-\delta)$

$$
u(t)=-2 \cos (2 t)+2 \sqrt{3} \sin (2 t)=
$$

[3] 2.) If $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are homogeneous solutions to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$, then a non-homogeneous solution to this second order linear differential equation is

$$
y(t)=
$$

\qquad
where $u_{1}(t)=$ \qquad and $u_{2}(t)=$ \qquad
[4] 3.) A spring is stretched 1 m by a force of 2 N . A mass of 9 kg is attached to the spring and also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass is $1 \mathrm{~m} / \mathrm{sec}$. The spring is set in motion from its equilibrium position with an upward velocity of $2 \mathrm{~m} / \mathrm{s}$. State the initial value problem that describes the motion of this mass. Do NOT solve.

IVP:
[10] 4.) Solve $y^{\prime \prime}-y=t+24 e^{3 t}, \quad y(0)=5, y^{\prime}(0)=2$.

Answer:
[3] 1.) Write the following in the form $u(t)=R \cos (b t-\delta)$

$$
u(t)=-2 \cos (2 t)-2 \sqrt{3} \sin (2 t)=
$$

[3] 2.) If $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are homogeneous solutions to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$, then a non-homogeneous solution to this second order linear differential equation is

$$
y(t)=
$$

\qquad
where $u_{1}(t)=$ \qquad and $u_{2}(t)=$ \qquad
[4] 3.) A 20 kg mass stretches a spring 2 m . The mass is acted on by an external force of $9 \sin (5 \mathrm{t}) \mathrm{N}$ and moves in a medium that imparts of viscous force of 8 N when the speed of the mass is $4 \mathrm{~m} / \mathrm{sec}$. The spring is compressed 4 m and then released. State the initial value problem that describes the motion of this mass. Do NOT solve.

IVP: \qquad
[10] 4.) Solve $y^{\prime \prime}+2 y^{\prime}+5 y=50+34 \sin (2 t), \quad y(0)=4, y^{\prime}(0)=1$.
[3] 1.) Write the following in the form $u(t)=R \cos (b t-\delta)$

$$
\begin{aligned}
u(t)=-2 \cos (2 t)+2 \sqrt{3} \sin (2 t)= & \frac{4 \cos \left(2 t-\frac{2 \pi}{3}\right)}{} \\
& \frac{\pi}{2}+\frac{\pi}{6}=\frac{4 \pi}{6}=\frac{2 \pi}{3}
\end{aligned}
$$

[3] 1.) Write the following in the form $u(t)=R \cos (b t-\delta)$

$$
\begin{aligned}
u(t)=-2 \cos (2 t)-2 \sqrt{3} \sin (2 t) & =\frac{4 \cos \left(2 t+\frac{2 \pi}{3}\right)}{} \\
& -\frac{\pi}{2}-\frac{\pi}{6}=-\frac{4 \pi}{6}=-\frac{2 \pi}{3}
\end{aligned}
$$

[3] 1.) Write the following in the form $u(t)=R \cos (b t-\delta)$

$$
u(t)=2 \cos (2 t)-2 \sqrt{3} \sin (2 t)=4 \cos \left(2 t+\frac{\pi}{3}\right)
$$

[3] 1.) Write the following in the form $u(t)=R \cos (b t-\delta)$

$$
u(t)=2 \sqrt{3} \cos (2 t)-2 \sin (2 t)=4 \cos \left(2 t+\frac{\pi}{6}\right)
$$

[3] 2.) If $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are homogeneous solutions to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$, then a non-homogeneous solution to this second order linear differential equation is

$$
y(t)=u_{1}(t) \phi_{1}+u_{2}(t) \phi_{2}
$$

[4] 3.) A 10 kg mass stretches a spring 5 m . The mass is acted on by an external force of $6 \cos (3 \mathrm{t}) \mathrm{N}$. The spring is compressed 4 m and then set in motion with an upward velocity of $2 \mathrm{~m} / \mathrm{s}$. Assume that there is no damping. State the initial value problem that describes the motion of this mass. Do NOT solve.

IVP: $\underline{10 u^{\prime \prime}+19.6 u=6 \cos (3 t), u(0)=-4, u^{\prime}(0)=-2}$
$m g=k L, k=\frac{10(9.8)}{5}=2(9.8)=19.6$
[4] 3.) A 20 kg mass stretches a spring 2 m . The mass is acted on by an external force of $9 \sin (5 \mathrm{t}) \mathrm{N}$ and moves in a medium that imparts of viscous force of 8 N when the speed of the mass is $4 \mathrm{~m} / \mathrm{sec}$. The spring is compressed 4 m and then released. State the initial value problem that describes the motion of this mass. Do NOT solve.

IVP: $20 u^{\prime \prime}+2 u^{\prime}+98 u=9 \sin (5 t), u(0)=-4, u^{\prime}(0)=0$
$m g=k L, k=\frac{20(9.8)}{2}=98$
$8=\gamma(4)$. Thus $\gamma=2$
[4] 3.) A spring mass system has a spring constant of $3 \mathrm{~N} / \mathrm{m}$. A mass of 4 kg is attached to the spring. The system is driven by an external force of $\sin (3 \mathrm{t}) \mathrm{N}$. The spring is streched 5 m and then set in motion with a downward velocity of $2 \mathrm{~m} / \mathrm{s}$. Assume that there is no damping. State the initial value problem that describes the motion of this mass. Do NOT solve.

IVP: $4 u^{\prime \prime}+3 u=\sin (3 t), u(0)=5, u^{\prime}(0)=2$
[4] 3.) A spring is stretched 1 m by a force of 2 N . A mass of 9 kg is attached to the spring and also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass is $1 \mathrm{~m} / \mathrm{sec}$. The spring is set in motion from its equilibrium position with an upward velocity of $2 \mathrm{~m} / \mathrm{s}$. State the initial value problem that describes the motion of this mass. Do NOT solve.

IVP: $\underline{9 u^{\prime \prime}+3 u^{\prime}+2 u=0, u(0)=0, u^{\prime}(0)=-2}$
$2=1 k$. Thus $k=2$
$3=\gamma(1)$.
[10] 4.) Solve $y^{\prime \prime}-4 y=-12+8 e^{2 t}, \quad y(0)=3, y^{\prime}(0)=6$.
Step 1: Solve homogeneous $y^{\prime \prime}-4 y=0$
Guess $y=e^{r t}: \quad r^{2}-4=0$, Thus $r= \pm 2$
Homogeneous solution: $y=c_{1} e^{2 t}+c_{2} e^{-2 t}$
Step 2a: Find a non-homogeneous solution to $y^{\prime \prime}-4 y=-12$
Guess $y=A$. Then $y^{\prime}=0$ and $y^{\prime \prime}=0$.
Plug in: $y^{\prime \prime}-4 y=12: \quad 0-4 A=-12$.
Thus $A=3$
Step 2b: Find a non-homogeneous solution to $y^{\prime \prime}-4 y=8 e^{2 t}$
Guess $y=A t e^{2 t}$. Then $y^{\prime}=A e^{2 t}+2 A t e^{2 t}$ and $y^{\prime \prime}=2 A e^{2 t}+2 A e^{2 t}+4 A t e^{2 t}=4 A e^{2 t}+4 A t e^{2 t}$.
Plug in: $y^{\prime \prime}-4 y=8 e^{2 t}: \quad 4 A e^{2 t}+4 A t e^{2 t}-4 A t e^{2 t}=8 e^{2 t}$
$4 A e^{2 t}=8 e^{2 t}$. Thus $A=2$.
General solution: $y=c_{1} e^{2 t}+c_{2} e^{-2 t}+3+2 t e^{2 t}$
$y^{\prime}=2 c_{1} e^{2 t}-2 c_{2} e^{-2 t}+2\left(e^{2 t}+2 t e^{2 t}\right)$
Initial values: $y(0)=3, y^{\prime}(0)=6$
$y(0)=3: \quad 3=c_{1}+c_{2}+3$. Thus $c_{2}=-c_{1}$
$y^{\prime}(0)=6: \quad 6=2 c_{1}-2 c_{2}+2$. Thus $4=2 c_{1}+2 c_{1}$. Thus $4=4 c_{1}$.
Hence $c_{1}=1$ and $c_{2}=-c_{1}=-1$
IVP solution: $y=e^{2 t}-e^{-2 t}+3+2 t e^{2 t}$
Answer: $y=e^{2 t}-e^{-2 t}+3+2 t e^{2 t}$
[10] 4.) Solve $y^{\prime \prime}-y=t+24 e^{3 t}, \quad y(0)=5, y^{\prime}(0)=2$.
Step 1: Solve homogeneous $y^{\prime \prime}-y=0$
Guess $y=e^{r t}: \quad r^{2}-1=0$, Thus $r= \pm 1$
Homogeneous solution: $y=c_{1} e^{t}+c_{2} e^{-t}$
Step 2a: Find a non-homogeneous solution to $y^{\prime \prime}-y=t$
Guess $y=A t+B$. Then $y^{\prime}=A$ and $y^{\prime \prime}=0$.
Plug in: $-(A t+B)=t: \quad-A=1$ and $B=0$.
So non-homogeneous solution to $y^{\prime \prime}-y=t$ is $y=-t$
Sidenote: No y^{\prime} term means we did not need constant term B, but including it is fine.
Step 2b: Find a non-homogeneous solution to $y^{\prime \prime}-y=24 e^{3 t}$
Guess $y=A e^{3 t}$. Then $y^{\prime}=3 A e^{3 t}$ and $y^{\prime \prime}=9 A e^{3 t}$.
Plug in: $y^{\prime \prime}-y=24 e^{3 t}: \quad 9 A e^{3 t}-A e^{3 t}=24 e^{3 t} \quad$ Thus $8 A e^{3 t}=24 e^{3 t}$ and $A=3$.
General solution: $y=c_{1} e^{t}+c_{2} e^{-t}-t+3 e^{3 t}$
$\left.y^{\prime}=c_{1} e^{t}-c_{2} e^{-t}-1+9 e^{3 t}\right)$
Initial values: $y(0)=5, y^{\prime}(0)=2$
$y(0)=5: \quad 5=c_{1}+c_{2}-0+3$. Thus $c_{1}+c_{2}=2$
$y^{\prime}(0)=2: \quad 2=c_{1}-c_{2}-1+9$. Thus $c_{1}-c_{2}=-6$.
Thus $2 c_{1}=-4$ and thus $c_{1}=-2$. Also $2 c_{2}=8$ and $c_{2}=4$
IVP solution: $y=-2 e^{t}+4 e^{-t}-t+3 e^{3 t}$

$$
\text { Answer: } \underline{y=-2 e^{t}+4 e^{-t}-t+3 e^{3 t}}
$$

[10] 4.) Solve $y^{\prime \prime}+2 y^{\prime}+5 y=50+34 \sin (2 t), \quad y(0)=4, y^{\prime}(0)=1$.
Step 1: Solve homogeneous DE: $y^{\prime \prime}+2 y^{\prime}+5 y=0$
Guess $y=e^{r t}: \quad r^{2}+2 r+5=0$, Thus $r=\frac{-2 \pm \sqrt{2^{2}-4(5)}}{2}=\frac{-2 \pm \sqrt{-16}}{2}=\frac{-2 \pm 4 i}{2}=-1 \pm 2 i$
Homogeneous solution: $y=c_{1} e^{-t} \cos (2 t)+c_{2} e^{-t} \sin (2 t)$
Step 2a: Find a non-homogeneous solution to $y^{\prime \prime}+2 y^{\prime}+5 y=50$
Guess $y=A$. Then $y^{\prime}=0$ and $y^{\prime \prime}=0$.
Plug in: $y^{\prime \prime}+2 y^{\prime}+5 y=50: \quad 0+5 A=50$. Thus $A=10$
Step 2b: Find a non-homogeneous solution to $y^{\prime \prime}+2 y+5 y=34 \sin (2 t)$
Guess $y=A \cos (2 t)+B \sin (2 t)$.
Then $y^{\prime}=-2 A \sin (2 t)+2 B \cos (2 t)$ and $y^{\prime \prime}=-4 A \cos (2 t)-4 B \sin (2 t)$.
Plug in: $y^{\prime \prime}+2 y+5 y=34 \sin (2 t)$:
$-4 A \cos (2 t)-4 B \sin (2 t)+2(-2 A \sin (2 t)+2 B \cos (2 t))+5(A \cos (2 t)+B \sin (2 t))=\sin (2 t)$
$-4 A \cos (2 t)+4 B \cos (2 t)+5 A \cos (2 t)=0$. Thus $-4 A+4 B+5 A=0$. Thus $A=-4 B$
$-4 B \sin (2 t)-4 A \sin (2 t)+5 B \sin (2 t))=34 \sin (2 t)$.
Thus $-4 B-4 A+5 B=1$. Thus $\mathrm{B}-4 \mathrm{~A}=\mathrm{B}-4(-4 \mathrm{~B})=17 \mathrm{~B}=34$. Thus $B=2$ and $A=-8$
General solution: $y=c_{1} e^{-t} \cos (2 t)+c_{2} e^{-t} \sin (2 t)+10-8 \cos (2 t)+2 \sin (2 t)$
$y^{\prime}=c_{1}\left[-e^{-t} \cos (2 t)-2 e^{-t} \sin (2 t)\right]+c_{2}\left[-e^{-t} \sin (2 t)+2 e^{-t} \cos (2 t)\right]+16 \sin (2 t)+4 \cos (2 t)$
Initial values: $y(0)=4, y^{\prime}(0)=1$.
$y(0)=4: \quad 4=c_{1}+10-8$. Thus $c_{1}=2$
$y^{\prime}(0)=2: \quad 2=c_{1}[-1]+c_{2}[2]+4$. Thus $-2=-2+2 c_{1}$. Thus $c_{2}=0$
IVP solution: $y=2 e^{-t} \cos (2 t)+10-8 \cos (2 t)+2 \sin (2 t)$

$$
\text { Answer: } \quad y=2 e^{-t} \cos (2 t)+10-8 \cos (2 t)+2 \sin (2 t)
$$

[10] 4.) Solve $y^{\prime \prime}+4 y=8+\sin (2 t), \quad y(0)=4, y^{\prime}(0)=1$.
Step 1: Solve homogeneous $y^{\prime \prime}+4 y=0$
Guess $y=e^{r t}: \quad r^{2}+4=0$, Thus $r= \pm 2 i$
Homogeneous solution: $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)$
Step 2a: Find a non-homogeneous solution to $y^{\prime \prime}+4 y=8$
Guess $y=A$. Then $y^{\prime}=0$ and $y^{\prime \prime}=0$.
Plug in: $y^{\prime \prime}+4 y=8: \quad 0+4 A=8$. Thus $A=2$
Step 2b: Find a non-homogeneous solution to $y^{\prime \prime}+4 y=\sin (2 t)$
Guess $y=t(A \cos (2 t)+B \sin (2 t))$.
Then $y^{\prime}=t[-2 A \sin (2 t)+2 B \cos (2 t)]+A \cos (2 t)+B \sin (2 t)$ and $y^{\prime \prime}=t[-4 A \cos (2 t)-4 B \sin (2 t)]+-2 A \sin (2 t)+2 B \cos (2 t)+-2 A \sin (2 t)+2 B \cos (2 t)$.

Thus $y^{\prime \prime}=(4 B-4 A t) \cos (2 t)+(-4 B t-4 A) \sin (2 t)$
Plug in: $y^{\prime \prime}+4 y=\sin (2 t)$:
$(4 B-4 A t) \cos (2 t)+(-4 B t-4 A) \sin (2 t)+4[t(A \cos (2 t)+B \sin (2 t))]=\sin (2 t)$
$(4 B-4 A t+4 t A) \cos (2 t)+(-4 B t-4 A+4 t B) \sin (2 t)=\sin (2 t)$
$(4 B) \cos (2 t)+(-4 A) \sin (2 t)=\sin (2 t)$
Thus $4 B=0$ and $B=0$. Also $-4 A=1$ Thus $A=-\frac{1}{4}$
General solution: $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+2-\frac{1}{4} t \cos (2 t)$
$y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-\frac{1}{4} \cos (2 t)+\frac{1}{2} t \sin (2 t)$
Initial values: $y(0)=4, y^{\prime}(0)=1$
$y(0)=4: \quad 4=c_{1}+2$. Thus $c_{1}=2$
$y^{\prime}(0)=1: \quad 1=2 c_{2}-\frac{1}{4}$. Thus $c_{2}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}$. Answer: $\quad y=2 \cos (2 t)+\frac{5}{8} \sin (2 t)+2-\frac{1}{4} t \cos (2 t)$

