7.4-7.6, 9.1

Solve the homogeneous linear DE: $\mathrm{x}^{\prime}-A \mathrm{x}=\mathbf{0}$

$$
\begin{aligned}
& \mathbf{x}^{\prime}=A \mathbf{x} \quad \text { Guess } x=\mathbf{v} e^{r t} . \quad \text { Plug in to find } \mathbf{v} \text { and } r: \\
& {\left[\mathbf{v} e^{r t}\right]^{\prime}=A \mathbf{v} e^{r t} \quad \text { implies } \quad r \mathbf{v} e^{r t}=A \mathbf{v} e^{r t} \quad \text { implies } \quad r \mathbf{v}=A \mathbf{v}}
\end{aligned}
$$

Thus \mathbf{v} is an eigenvector with eigenvalue r.
Note since the equation is homogeneous and linear, linear combinations of solutions are also solutions:

Suppose $\mathbf{x}=\mathbf{f}_{\mathbf{1}}(t)$ and $\mathbf{x}=\mathbf{f}_{\mathbf{2}}(t)$ are solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$.
Then $\mathbf{f}_{\mathbf{1}}{ }^{\prime}=A \mathbf{f}_{\mathbf{1}}$ and $\mathbf{f}_{\mathbf{2}}{ }^{\prime}=A \mathbf{f}_{\mathbf{2}}$
Thus $\left[c_{1} \mathbf{f}_{\mathbf{1}}+c_{2} \mathbf{f}_{\mathbf{2}}\right]^{\prime}=c_{1} \mathbf{f}_{\mathbf{1}}{ }^{\prime}+c_{2} \mathbf{f}_{\mathbf{2}}{ }^{\prime}=c_{1} A \mathbf{f}_{\mathbf{1}}+c_{2} A \mathbf{f}_{\mathbf{2}}=A\left(c_{1} \mathbf{f}_{\mathbf{1}}+c_{2} \mathbf{f}_{\mathbf{2}}\right)$.
Suppose an object moves in the 2D plane (the x_{1}, x_{2} plane) so that it is at the point $\left(x_{1}(t), x_{2}(t)\right)$ at time t. Suppose the object's velocity is given by

$$
\begin{gathered}
x_{1}^{\prime}(t)=4 x_{1}+x_{2} \\
x_{2}^{\prime}(t)=5 x_{1}
\end{gathered}
$$

Or in matrix form $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{ll}4 & 1 \\ 5 & 0\end{array}\right)\binom{x_{1}}{x_{2}}$
To solve, find eigenvalues and corresponding eigenvectors:

$$
\left|\begin{array}{cc}
4-r & 1 \\
5 & -r
\end{array}\right|=(4-r)(-r)-5=r^{2}-4 r-5=(r-5)(r+1) .
$$

Thus $r=-1,5$ are eigenvalues.

Eigenvectors associated to eigenvalue $r=-1:\left(\begin{array}{cc}5 & 1 \\ 5 & 1\end{array}\right) \sim\left(\begin{array}{cc}1 & \frac{1}{5} \\ 0 & 0\end{array}\right)$
Thus x_{2} is free and $x_{1}+\frac{1}{5} x_{2}=0$
Hence the eigenspace corresponding to $r=-1$ is
$\binom{x_{1}}{x_{2}}=\binom{-\frac{1}{5} x_{2}}{x_{2}}=x_{2}\binom{-\frac{1}{5}}{1}$
Thus $\binom{-1}{5}$ is an eigenvector with eigenvalue $r=-1$
Hence $\binom{x_{1}}{x_{2}}=\binom{-1}{5} e^{-t}$ is a solution.
E. vectors associated to e. value $r=5:\left(\begin{array}{cc}-1 & 1 \\ 5 & -5\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}$

Thus $\binom{1}{1}$ is an eigenvector with eigenvalue $r=5$
since it is a nonzero solution to the above equation.
Hence $\binom{x_{1}}{x_{2}}=\binom{1}{1} e^{5 t}$ is also a solution.
Hence the general solutions is $\binom{x_{1}}{x_{2}}=c_{1}\binom{-1}{5} e^{-t}+c_{2}\binom{1}{1} e^{5 t}$
Or in non-matrix form: $x_{1}(t)=-c_{1} e^{-t}+c_{2} e^{5 t}$

$$
x_{2}(t)=5 c_{1} e^{-t}+c_{2} e^{5 t}
$$

IVP: $x_{1}\left(t_{0}\right)=x_{1}^{0}, x_{2}\left(t_{0}\right)=x_{2}^{0}$
Solve for $c_{1}, c_{2}: \quad\binom{x_{1}^{0}}{x_{2}^{0}}=c_{1}\binom{-1}{5} e^{-t_{0}}+c_{2}\binom{1}{1} e^{5 t_{0}}$
Or in non-matrix form:

$$
\begin{gathered}
x_{1}^{0}=-c_{1} e^{-t_{0}}+c_{2} e^{5 t_{0}} \\
x_{2}^{0}=5 c_{1} e^{-t_{0}}+c_{2} e^{5 t_{0}}
\end{gathered}
$$

Or in matrix form:

$$
\binom{x_{1}^{0}}{x_{2}^{0}}=\left(\begin{array}{cc}
-e^{-t_{0}} & e^{5 t_{0}} \\
5 e^{-t_{0}} & e^{5 t_{0}}
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

Thus unique solution iff

$$
W\left[\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}\right]\left(t_{0}\right)=\left|\begin{array}{cc}
-e^{-t_{0}} & e^{5 t_{0}} \\
5 e^{-t_{0}} & e^{5 t_{0}}
\end{array}\right|=\left|\begin{array}{rr}
-1 & 1 \\
5 & 1
\end{array}\right| e^{4 t_{0}}=(-1-5) e^{4 t_{0}} \neq 0
$$

where $\mathbf{f}_{\mathbf{1}}(t)=\binom{-1}{5} e^{-t}, \quad \mathbf{f}_{\mathbf{2}}(t)=\binom{1}{1} e^{5 t}$ and
$W\left[\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}\right]\left(t_{0}\right)$ is the Wronskian of these two vector functions evaluated at t_{0}.

Note: there is a unique solution to IVP iff the solutions f_{1}, f_{1} are linearly independent iff the vectors $\binom{-1}{5},\binom{1}{1}$ are linearly independent. But since these vectors have different eigenvalues, we know from linear algebra, that they are linearly independent.

Since we have 3 variables, we can graph a solution to an IVP in $\mathbf{R}^{\mathbf{3}}$. However, sometimes we are interested in how
x_{1} varies with $t: \quad x_{1}=-c_{1} e^{-t}+c_{2} e^{5 t}$
x_{2} varies with $t: \quad x_{2}=5 c_{1} e^{-t}+c_{2} e^{5 t}$
x_{2} varies with x_{1} : Often it is the last pair we are interested in (for example, location of object in above example or predator vs prey or see other examples in 7.1).

$$
\begin{aligned}
& x_{1}=-c_{1} e^{-t}+c_{2} e^{5 t} \\
& x_{2}=5 c_{1} e^{-t}+c_{2} e^{5 t}
\end{aligned}
$$

implies $x_{2}-x_{1}=6 c_{1} e^{-t}, \quad 5 x_{1}+x_{2}=6 c_{2} e^{5 t}=6 c_{2}\left(e^{-t}\right)^{-5}$
Thus $5 x_{1}+x_{2}=6 c_{2}\left(\frac{x_{2}-x_{1}}{6 c_{1}}\right)^{-5}$ is an implicit solution for x_{1}, x_{2}.
To see how x_{2} varies with x_{1}, it is easiest to draw the direction field for the x_{1}, x_{2} plane (the phase plane):

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=4 x_{1}+x_{2} \\
& \frac{d x_{2}}{d t}=5 x_{1}
\end{aligned}
$$

Thus $\frac{\frac{d x_{2}}{d t}}{\frac{d x_{1}}{d t}}=\frac{d x_{2}}{d x_{1}}=\frac{5 x_{1}}{4 x_{1}+x_{2}}$
The graph of a solution to an IVP in the x_{1}, x_{2} plane is called a trajectory.

Some obvious trajectories:
The general solutions is $\binom{x_{1}}{x_{2}}=c_{1}\binom{-1}{5} e^{-t}+c_{2}\binom{1}{1} e^{5 t}$
IVP: If $\binom{x_{1}(0)}{x_{2}(0)}=\binom{-1}{5}$, then $c_{1}=1$ and $c_{2}=0$.
Thus $x_{1}=-e^{-t}$ and $x_{2}=5 e^{-t}$. Thus $x_{2}=-5 x_{1}$.
Suppose $x_{2}=-5 x_{1}: \frac{d x_{2}}{d x_{1}}=\frac{5 x_{1}}{4 x_{1}+x_{2}}=\frac{5 x_{1}}{4 x_{1}+-5 x_{1}}=-5$.
Recall $\binom{-1}{5}$ is an eigenvector.

IVP: If $\binom{x_{1}(0)}{x_{2}(0)}=\binom{1}{1}$, then $c_{1}=0$ and $c_{2}=1$.
Thus $x_{1}=e^{5 t}$ and $x_{2}=e^{5 t}$. Thus $x_{2}=x_{1}$.
Suppose $x_{2}=1 x_{1}: \frac{d x_{2}}{d x_{1}}=\frac{5 x_{1}}{4 x_{1}+x_{2}}=\frac{5 x_{1}}{4 x_{1}+x_{1}}=1$.
Recall $\binom{1}{1}$ is an eigenvector.

Suppose $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x_{1}}{x_{2}}$
Suppose $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{v_{1}}{v_{2}}=r_{1}\binom{v_{1}}{v_{2}}$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{w_{1}}{w_{2}}=r_{2}\binom{w_{1}}{w_{2}}$
Then general solution is $\binom{x_{1}}{x_{2}}=k_{1}\binom{v_{1}}{v_{2}} e^{r_{1} t}+k_{2}\binom{w_{1}}{w_{2}} e^{r_{2} t}$
Observe $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{a v_{1}+b v_{2}}{c v_{1}+d v_{2}}=\binom{r_{1} v_{1}}{r_{1} v_{2}}$
IVP: If $\binom{x_{1}(0)}{x_{2}(0)}=\binom{v_{1}}{v_{2}}$, then $k_{1}=1$ and $k_{2}=0$.
Thus $x_{1}=v_{1} e^{r_{1} t}$ and $x_{2}=v_{2} e^{r_{1} t}$. Thus $x_{2}=\frac{v_{2}}{v_{1}} x_{1}$.
Similarly, if $k_{1}=0, x_{2}=\frac{w_{2}}{w_{1}} x_{1}$.

Section 3.3: If $b^{2}-4 a c<0,:$
Changed format of $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$ to linear combination of realvalued functions instead of complex valued functions by using Euler's formula:

$$
e^{i t}=\cos (t)+i \sin (t)
$$

Hence $e^{(d+i n) t}=e^{d t} e^{i n t}=e^{d t}[\cos (n t)+i \sin (n t)]$
Let $r_{1}=d+i n, r_{2}=d-i n$

$$
\begin{aligned}
& y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}=c_{1} e^{(d+i n) t}+c_{2} e^{(d-i n) t}=c_{1} e^{d t} e^{i n t}+c_{2} e^{d t} e^{-i n t} \\
& =c_{1} e^{d t}[\cos (n t)+i \sin (n t)]+c_{2} e^{d t}[\cos (-n t)+i \sin (-n t)] \\
& =c_{1} e^{d t} \cos (n t)+i c_{1} e^{d t} \sin (n t)+c_{2} e^{d t} \cos (n t)-i c_{2} e^{d t} \sin (n t) \\
& =\left(c_{1}+c_{2}\right) e^{d t} \cos (n t)+i\left(c_{1}-c_{2}\right) e^{d t} \sin (n t) \\
& \quad=k_{1} e^{d t} \cos (n t)+k_{2} e^{d t} \sin (n t)=e^{d t}\left[k_{1} \cos (n t)+k_{2} \sin (n t)\right]
\end{aligned}
$$

Section 7.6: $(a+d)^{2}-4(a d-b c)<0$. I.e., $r=\lambda \pm i \mu$
Suppose the eigenvector corresponding to this eigenvalue is

$$
\left[\begin{array}{l}
v_{1} \pm i w_{1} \\
v_{2} \pm i w_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \pm i\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

Hence the general solutions in unsimplified form:

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =c_{1}\left[\begin{array}{l}
v_{1}+i w_{1} \\
v_{2}+i w_{2}
\end{array}\right] e^{(\lambda+i \mu) t}+c_{2}\left[\begin{array}{l}
v_{1}-i w_{1} \\
v_{2}-i w_{2}
\end{array}\right] e^{(\lambda-i \mu) t} \\
& =c_{1}\left[\begin{array}{l}
v_{1}+i w_{1} \\
v_{2}+i w_{2}
\end{array}\right] e^{\lambda t} e^{i \mu t}+c_{2}\left[\begin{array}{l}
v_{1}-i w_{1} \\
v_{2}-i w_{2}
\end{array}\right] e^{\lambda t} e^{-i \mu t}
\end{aligned}
$$

$$
\begin{aligned}
& =c_{1}\left[\begin{array}{l}
v_{1}+i w_{1} \\
v_{2}+i w_{2}
\end{array}\right] e^{\lambda t}[\cos (\mu t)+i \sin (\mu t)]+c_{2}\left[\begin{array}{l}
v_{1}-i w_{1} \\
v_{2}-i w_{2}
\end{array}\right] e^{\lambda t}[\cos (-\mu t) \\
& +i \sin (-\mu t)] \\
& =c_{1}\left[\begin{array}{l}
v_{1}+i w_{1} \\
v_{2}+i w_{2}
\end{array}\right] e^{\lambda t}[\cos (\mu t)+i \sin (\mu t)]+c_{2}\left[\begin{array}{l}
v_{1}-i w_{1} \\
v_{2}-i w_{2}
\end{array}\right] e^{\lambda t}[\cos (\mu t) \\
& -i \sin (\mu t)] \\
& =c_{1}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] e^{\lambda t}[\cos (\mu t)+i \sin (\mu t)]+c_{1}\left[\begin{array}{l}
i w_{1} \\
i w_{2}
\end{array}\right] e^{\lambda t}[\cos (\mu t)+i \sin (\mu t)] \\
& +c_{2}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] e^{\lambda t}[\cos (\mu t)-i \sin (\mu t)]-c_{2}\left[\begin{array}{l}
i w_{1} \\
i w_{2}
\end{array}\right] e^{\lambda t}[\cos (\mu t)-i \sin (\mu t)] \\
& =c_{1}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] e^{\lambda t}[\cos (\mu t)+i \sin (\mu t)]+c_{1}\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] e^{\lambda t}\left[i \cos (\mu t)+i^{2} \sin (\mu t)\right] \\
& +c_{2}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] e^{\lambda t}[\cos (\mu t)-i \sin (\mu t)]-c_{2}\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] e^{\lambda t}\left[i \cos (\mu t)-i^{2} \sin (\mu t)\right] \\
& =\left(c_{1}+c_{2}\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] e^{\lambda t} \cos (\mu t)+i\left(c_{1}-c_{2}\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] e^{\lambda t} \sin (\mu t) \\
& +i\left(c_{1}-c_{2}\right)\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] e^{\lambda t} \cos (\mu t)-\left(c_{1}+c_{2}\right)\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] e^{\lambda t} \sin (\mu t) \\
& =\left(c_{1}+c_{2}\right)\left(\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \cos (\mu t)-\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \sin (\mu t)\right) e^{\lambda t} \\
& +i\left(c_{1}-c_{2}\right)\left(\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \sin (\mu t)+\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \cos (\mu t)\right) e^{\lambda t}
\end{aligned}
$$

Then general solution is

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=c_{1}\left(\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \cos (\mu t)-\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]\right.} \\
& \\
& \\
& \quad+c_{2}\left(\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \sin (\mu t)\right) e^{\lambda t} \\
&
\end{aligned}
$$

7.6 Special case: $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]^{\prime}=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
$A-\lambda I=\left|\begin{array}{cc}a-\lambda & b \\ -b & a-\lambda\end{array}\right|=(a-\lambda)^{2}+b^{2}=\lambda^{2}-2 a \lambda+a^{2}+b^{2}$
Thus $\lambda=\frac{2 a \pm \sqrt{4 a^{2}-4\left(a^{2}+b^{2}\right)}}{2}=\frac{2 a \pm \sqrt{-4 b^{2}}}{2}=a \pm b i$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\prime}\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { implies } \begin{gathered}
x_{1}^{\prime}=a x_{1}+b x_{2} \\
x_{2}^{\prime}=-b x_{1}+a x_{2}
\end{gathered}
$$

Change to polar coordinates: $r^{2}=x_{1}^{2}+x_{2}^{2}$ and $\tan \theta=\frac{x_{2}}{x_{1}}$
Take derivative with respect to t of both equations:
$2 r r^{\prime}=2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}$ implies
$r r^{\prime}=x_{1}\left(a x_{1}+b x_{2}\right)+x_{2}\left(-b x_{1}+a x_{2}\right)$
$=a x_{1}^{2}+b x_{1} x_{2}-b x_{1} x_{2}+a x_{2}^{2}=a\left(x_{1}^{2}+x_{2}^{2}\right)=a r^{2}$
Thus $r r^{\prime}=a r^{2}$ implies $\frac{d r}{d t}=a r$ and thus $r=C e^{a t}$.
$\left(\sec ^{2} \theta\right) \theta^{\prime}=\frac{x_{1} x_{2}^{\prime}-x_{1}^{\prime} x_{2}}{x_{1}^{2}}=\frac{x_{1}\left(-b x_{1}+a x_{2}\right)-\left(a x_{1}+b x_{2}\right) x_{2}}{x_{1}^{2}}$
$=\frac{-b x_{1}^{2}+a x_{1} x_{2}-a x_{1} x_{2}-b x_{2}^{2}}{x_{1}^{2}}=\frac{-b\left(x_{1}^{2}+x_{2}^{2}\right)}{x_{1}^{2}}=\frac{-b\left(r^{2}\right)}{x_{1}^{2}}=-b \sec ^{2} \theta$
$\left(\sec ^{2} \theta\right) \theta^{\prime}=-b \sec ^{2} \theta$ implies $\theta^{\prime}=-b$ and thus $\theta=-b t+\theta_{0}$
Change of basis: Let $\mathbf{x}=P \mathbf{y}$. If $\mathbf{x}^{\prime}=A \mathbf{x}$, then

$$
[P \mathbf{y}]^{\prime}=A P \mathbf{y} \text { implies } P \mathbf{y}^{\prime}=A P \mathbf{y} \text {. Thus } \mathbf{y}^{\prime}=P^{-1} A P \mathbf{y}
$$

Ch 7 and 9

Suppose an object moves in the 2D plane (the x_{1}, x_{2} plane) so that it is at the point $\left(x_{1}(t), x_{2}(t)\right)$ at time t. Suppose the object's velocity is given by

$$
\begin{aligned}
x_{1}^{\prime}(t) & =a x_{1}+b x_{2}, \\
x_{2}^{\prime}(t) & =c x_{1}+d x_{2}
\end{aligned}
$$

Or in matrix form $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x_{1}}{x_{2}}$
To solve, find eigenvalues and corresponding eigenvectors:

$$
\begin{gathered}
\left|\begin{array}{cc}
a-r & b \\
c & d-r
\end{array}\right|=(a-r)(d-r)-b c=r^{2}-(a+d) r+a d-b c=0 . \\
\text { Thus } r=\frac{(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2}
\end{gathered}
$$

Case 1: $(a+d)^{2}-4(a d-b c)>0$
Hence the general solutions is $\binom{x_{1}}{x_{2}}=c_{1}\binom{v_{1}}{v_{2}} e^{r_{1} t}+c_{2}\binom{w_{1}}{w_{2}} e^{r_{2} t}$
Case 1a: $r_{1}>r_{2}>0$

Case 1b: $r_{1}<r_{2}<0$

Case 1c: $r_{2}<0<r_{1}$

Case 2: $(a+d)^{2}-4(a d-b c)=0$
Case 2i: Two independent eigenvectors:
The general solution is $\binom{x_{1}}{x_{2}}=c_{1}\binom{v_{1}}{v_{2}} e^{r t}+c_{2}\binom{w_{1}}{w_{2}} e^{r t}$
Case 2ii: One independent eigenvectors:
The general solution is $\binom{x_{1}}{x_{2}}=c_{1}\binom{v_{1}}{v_{2}} e^{r t}+c_{2}\left[\binom{v_{1}}{v_{2}} t+\binom{w_{1}}{w_{2}}\right] e^{r t}$ Case 2a: $r>0$ Case 2b: $r<0$

Case 3: $(a+d)^{2}-4(a d-b c)<0$. I.e., $r=\lambda \pm i \mu$
Suppose eigenvector corresponding to eigenvalue is
$\binom{v_{1} \pm i w_{1}}{v_{2} \pm i w_{2}}=\binom{v_{1}}{v_{2}} \pm i\binom{w_{1}}{w_{2}}$
Then general solution is
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=c_{1} e^{\lambda t}\left(\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \cos (\mu t)-\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] \sin (\mu t)\right)$

$$
+c_{2} e^{\lambda t}\left(\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \sin (\mu t)+\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \cos (\mu t)\right)
$$

Case 3a: $\lambda>0$

Case 3a: $\lambda<0$

Case 3a: $\lambda=0$

