Quiz 5 SHOW ALL WORK
Nov 30, 2018
[13] 1.) Find all equilibrium solutions and classify them (stable, asymptotically stable, semi-stable, unstable and if system of DEs, node, saddle, spiral, center). For the non-linear system of DEs, state all possibilities for type of equilibrium solution.

1a.) $y^{\prime}=(y-3)(y-5)^{8} \quad y=3$ is unstable, $y=5$ is semi-stable.

1b.) $x^{\prime}=y-1, y^{\prime}=(x-3) y$

If $y-1=0$, then $y=1$
If $y=1$, then $(x-1) y=x-3=0$. Thus $x=3$.
Jacobian matrix: $\left[\begin{array}{cc}0 & 1 \\ y & x-3\end{array}\right]$
For $(x, y)=(1,3)$, Jacobian matrix is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$\left|\begin{array}{cc}-r & 1 \\ 1 & -r\end{array}\right|=r^{2}-1=(r-1)(r+1)=0$.
Thus $r=-1.1$, i.e, one positive and one negative eigenvalue.
Thus $(x(t), y(t))=(1,3)$ is an unstable saddle.
[7] 2.) The slope field for a first order differential equation is shown below. In addition to determining and classifying all equilibrium solutions (if any), also draw the trajectories satisfying the initial values $y(0)=3$ and $y(1)=0$.

2a.)

No equilibrium solution.

2b.)

Unstable quilibrium solution: $y=2$.
[8] 3.) The stream plot in the $x_{1}-x_{2}$ plane for a system of two first order differential equations is shown below. In addition to determining and classifying the $\mathbf{4}$ equilibrium solutions, also draw the trajectory satisfying the initial value $\left(x_{1}(0), x_{2}(0)\right)=(0,-2)$. Also describe the basins of attraction for each asymptotically stable equilibrium solutions.

$$
\begin{aligned}
\left(x_{1}(t), x_{2}(t)\right) & =(0,0) \text { is an unstable saddle. } \\
\left(x_{1}(t), x_{2}(t)\right) & =(2,0) \text { is an unstable saddle. } \\
\left(x_{1}(t), x_{2}(t)\right) & =(1,1) \text { is an asymptotically stable spiral. } \\
& \text { basin of attraction: } x_{1}<2 \text { and } x_{2}>0 . \\
\left(x_{1}(t), x_{2}(t)\right) & =(-2,-2) \text { is an asymptotically stable spiral. } \\
& \text { basin of attraction: } x_{1}<2 \text { and } x_{2}<0 .
\end{aligned}
$$

[5] 4.) Use Picard's iteration method to find a degree 3 polynomial approximation for the solution to the initial value problem, $y^{\prime}=y+6 t^{2}, y(0)=0$. Start with $\phi_{0}(t)=0$.
$\phi_{1}(t)=\int_{0}^{t} f\left(s, \phi_{0}(s)\right) d s=\int_{0}^{t}\left(\phi_{0}(s)+6 s^{2}\right) d s=\int_{0}^{t}\left(6 s^{2}\right) d s=\left.\int_{0}^{t} 2 s^{3}\right|_{0} ^{2}=2 t^{3}$
Approximation: $\quad y=2 t^{3}$
[7] 5.) Using power series to find a degree 3 polynomial approximation for the general solution to $y^{\prime}-y=6 x^{2}$ for x near 0
$y=\sum_{n=0}^{\infty} a_{n} x^{n}, y^{\prime}=\sum_{n=1}^{\infty} a_{n} n x^{n-1}$,
$\Sigma_{n=1}^{\infty} a_{n}(n) x^{n-1}-\Sigma_{n=0}^{\infty} a_{n} x^{n}=6 x^{2}$
$\Sigma_{n=0}^{\infty} a_{n+1}(n+1) x^{n}-\Sigma_{n=0}^{\infty} a_{n} x^{n}=6 x^{2}$
$\Sigma_{n=0}^{\infty}\left[a_{n+1}(n+1)-a_{n}\right] x^{n}=6 x^{2}$
$a_{n+1}(n+1)-a_{n}=0$ for $n=0,1$ and $n>2$
$a_{n+1}=\frac{a_{n}}{n+1}$ for $n=0,1$ and $n>2$
For $n=0: \quad a_{1}=\frac{a_{0}}{1}$
For $n=1: \quad a_{2}=\frac{a_{1}}{2}=\frac{a_{0}}{2}$
For $\left.n=2: \quad a_{3}(3)-a_{2}\right] x^{2}=6 x^{2}$ implies $3 a_{3}-a_{2}=6$ and thus $a_{3}=\frac{a_{2}+6}{3}=\frac{a_{2}}{3}+2=\frac{a_{0}}{6}+2$

Answer: $\quad y=a_{0}+a_{0} x+\frac{a_{0}}{2} x^{2}+\left(\frac{a_{0}}{6}+2\right) x^{3}$
Note for this particular example, the approximation for the IVP solutions are the same for both 4 and 5 . This is NOT usually the case. Different methods to approximate solutions will generaly give different approximations, but in the limit they should be the same.

