[10] 1a.) Draw the direction field for the following differential equation: $y^{\prime}=y(2-y)$

[4] 1b.) On the direction field above, draw the solution to the above differential equation that satisfies the initial condition $y(0)=1$.

Note the solution satisfying the initial condition $y(0)=1$ must pass thru the initial value $(0,1)$.
[6] 1c.) Does the differential equation whose direction field is given above have any equilibrium solutions? If so, state whether they are stable, semi-stable or unstable.

An equilibrium solution is a constant solution, $y=C$.
The graph of a constant solution, $y=C$ is a horizontal line.
$y=2$ is stable and $y=0$ is unstable
[5] 2.) Give an example of an initial value problem that does not have a unique solution.
The classic example is $y^{\frac{1}{3}}, y(0)=0$, which as an infinite number of solutions.
3.) Circle T for true and F for false.
[5] 2c.) Suppose $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are solutions to $a y^{\prime \prime}+b y^{\prime}+c y=0$. Then $y=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is also a solution to this linear homogeneous differential equation.
[5] 2d.) Suppose $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are linearly independent solutions to $a y^{\prime \prime}+b y^{\prime}+c y=0$. If $y=h(t)$ is also a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$, then there exists constants c_{1} and c_{2} such that $h(t)=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$.
[20] 4.) Find the general solution to $t y^{\prime}-2 y=t^{3} e^{t}-8$. Also find the solution that passes thru the point $(1,3)$. How does the solution passing thru $(1,3)$ behave as $t \rightarrow \infty$? $t y^{\prime}-2 y=t^{3} e^{t}-8$ implies $1 y^{\prime}+\left(-\frac{2}{t}\right) y=t^{2} e^{t}-8 t^{-1}$.

Integrating factor: $u=e^{\int p(t) d t}=e^{\int-\frac{2}{t} d t}=e^{-2 \ln |t|}=e^{\ln \left(|t|^{-2}\right)}=t^{-2}$
Let $u(t)=t^{-2}$
$t^{-2} y^{\prime}-2 t^{-3} y=e^{t}-8 t^{-3}$
$\left(t^{-2} y\right)^{\prime}=e^{t}-8 t^{-3}$
Check: $\left(t^{-2} y\right)^{\prime}=t^{-2} y^{\prime}-2 t^{-3} y$
$\int\left(t^{-2} y\right)^{\prime} d t=\int\left(e^{t}-8 t^{-3}\right) d t$
$t^{-2} y=e^{t}+4 t^{-2}+C$
$y=t^{2} e^{t}+4+C t^{2}$
$y(1)=3: \quad 3=(1)^{2} e^{1}+4+C(1)^{2}=e+4+C$
$3=e+4+C$. Thus $C=-1-e$
IVP soln: $y=t^{2} e^{t}+4+(-1-e) t^{2}$
$y=t^{2} e^{t}+4-t^{2}-e t^{2}$
$y=t^{2}\left(e^{t}-e-1\right)+4$
$t \rightarrow+\infty, t^{2} \rightarrow+\infty$ and $e^{t} \rightarrow+\infty$ and hence $e^{t}-e-1 \rightarrow+\infty$.
Thus $y=t^{2}\left(e^{t}-e-1\right)+4 \rightarrow+\infty$

General solution: $\quad y=t^{2} e^{t}+4+C t^{2}$

IVP solution: $\quad y=t^{2}\left(e^{t}-e-1\right)+4$

$$
t \rightarrow \infty, y \rightarrow+\infty
$$

5.) Solve the following 2 nd order differential equations
[15] 5a.) $2 y^{\prime \prime}-y^{\prime}+10 y=0$
Guess $y=e^{r t}$
$2 r^{2}-r+10=0$. Thus $r=\frac{1 \pm \sqrt{(-1)^{2}-4(2)(10)}}{2(2)}=\frac{1 \pm \sqrt{(1-80)}}{4}=\frac{1 \pm \sqrt{-79}}{4}=\frac{1}{4} \pm i \frac{\sqrt{79}}{4}$

General solution: $\quad y=c_{1} e^{\frac{t}{4}} \cos \left(\frac{\sqrt{79}}{4} t\right)+c_{2} e^{\frac{t}{4}} \sin \left(\frac{\sqrt{79}}{4} t\right)$
[15] 5b.) $x\left(x^{\prime \prime}\right)=(x)^{2} \quad$ Hint: Let $x^{\prime}=\frac{d x}{d t}=v$, then $v^{\prime}=\frac{d v}{d t}=\frac{d x}{d t} \frac{d v}{d x}=v \frac{d v}{d x}$
Also $x^{\prime}=\frac{d x}{d t}=v$ implies $x^{\prime \prime}=v^{\prime}=\frac{d v}{d t}=\frac{d x}{d t} \frac{d v}{d x}=v \frac{d v}{d x}$
$x \frac{d v}{d t}=v^{2}$, but this has 3 variables, so replace $\frac{d v}{d t}=\frac{d x}{d t} \frac{d v}{d x}=v \frac{d v}{d x}$
$x v \frac{d v}{d x}=v^{2}$
$\frac{d v}{v}=\frac{d x}{x}$
$\ln |v|=\ln |x|+C$
$v=C x$
$\frac{d x}{d t}=C x$
$\frac{d x}{x}=C d t$
$\ln |x|=C t+k$
$x=k e^{C t}$
Check: $\left(k e^{C t}\right)\left(k C^{2} e^{C t}\right)=C k e^{C t} C k e^{C t}$

General solution: $\quad x=k e^{C t}$
$[15]$ 6.) Show by induction that for Picard's iteration method, $\phi_{n}(t)=\sum_{k=1}^{n} \frac{t^{2 k}}{k!}$ approximates the solution to the initial value problem, $y^{\prime}=2 t(1+y), y(0)=0$ where $\phi_{1}(t)=t^{2}$. You may use the proof outline below or write it from scratch.

Proof by induction on n.
For $n=1, \quad \sum_{k=1}^{1} \frac{t^{2 k}}{k!}=\frac{3(-1)^{1+1} t^{1+1}}{(1+1)!}=\frac{3 t^{2}}{2!}=\phi_{1}(t)$

Suppose for $n=j, \quad \phi_{j-1}(t)=\sum_{k=1}^{j-1} \frac{t^{2 k}}{k!}$

Claim: $\phi_{j}=\sum_{k=1}^{j} \frac{t^{2 k}}{k!}$

Proof of claim: By Picard's iteration method, $\phi_{j}=\int_{0}^{t} f\left(s, \phi_{j-1}(s)\right) d s$

$$
\begin{aligned}
& =\int_{0}^{t} 2 s\left(1+\sum_{k=1}^{j-1} \frac{s^{2 k}}{k!}\right) d s \\
& =\int_{0}^{t}\left(2 s+\sum_{k=1}^{j-1} \frac{2 s^{2 k+1}}{k!}\right) d s \\
& =\int_{0}^{t}\left(\sum_{k=0}^{j-1} \frac{2 s^{2 k+1}}{k!}\right) d s \\
& =\sum_{k=0}^{j-1} \frac{2 t^{2 k+2}}{(2 k+2) k!} \\
& =\sum_{k=0}^{j-1} \frac{2 t^{2 k+2}}{2(k+1) k!} \\
& =\sum_{k=0}^{j-1} \frac{t^{2 k+2}}{(k+1)!} \\
& =\sum_{k=1}^{j} \frac{t^{2 k}}{k!}
\end{aligned}
$$

