Quiz 5 Form A Oct 30, 2017

[10] 1. Let y_1 and y_2 be solutions of ty'' + 4y' + sin(t)y = 0; t > 0. Let W(t) be the Wronskian of $y_1(t)$ and $y_2(t)$. Given that W(1) = 3, find W(t).

 $W(t) = \underline{3t^{-4}}$

 $p(t) = \frac{4}{t}$. Thus by Abel's thm $W(t) = ce^{-\int \frac{4dt}{t}} = ce^{-4\int \frac{dt}{t}} = ce^{-4ln|t|} = e^{ln|t|^{-4}} = ct^{-4}$.

Thus $W(t) = ct^{-4}$ for some constant c. Since W(1) = 3, $3 = c(1)^{-4}$. Thus c = 3.

Hence $W(t) = 3t^{-4}$

[10] 2.) Write $y = \sqrt{3}cos(5t) - sin(5t)$ in the form $y = Rcos(\omega t - \delta)$. Determine the period, phase, and amplitude.

 $y = 2\cos(5t + \frac{\pi}{6})$

period = $\frac{2\pi}{5}$, phase = $-\frac{\pi}{6}$, and amplitude = 2.

amplitude = $R = \sqrt{c_1^2 + c_2^2} = \sqrt{3+1} = \sqrt{4} = 2$

phase = δ where $tan(\delta) = \frac{c_2}{c_1} = \frac{-1}{\sqrt{3}}$.

Note if you plot $(Rcos(\delta), Rsin(\delta) = (\sqrt{3}, -1))$, you can see the angle the vector $(\sqrt{3}, -1)$ forms with the positive x axis is $-\frac{\pi}{6}$. Thus $\delta = -\frac{\pi}{6}$

Derivation: $Rcos(\omega t - \delta) = Rcos(\delta)R(\omega t) + Rsin(\delta)Rsin(\omega t) = \sqrt{3}cos(5t) - sin(5t)$

Thus $\omega = 5$, period $= \frac{2\pi}{5}$, and $Rcos(\delta) = \sqrt{3}$, $Rsin(\delta) = -1$

Thus $tan(\delta) = \frac{Rsin(\delta)}{Rcos(\delta)} = \frac{-1}{\sqrt{3}}$.

Since $cos(\delta) > 0$ and $sin(\delta) < 0$, δ is in quadrant 4 (i.e., $-\frac{\pi}{2} < \delta < 0$). Thus $\delta = -\frac{\pi}{6}$