1. A mass weighing 9 lbs stretches a spring 5 in . The mass is acted on by an external force of $7 \sin (3 \mathrm{t}) \mathrm{lbs}$. The mass is pulled down 2 feet and then set in motion with an upward velocity of $8 \mathrm{ft} / \mathrm{s}$. Assume that there is no damping. Note $g=32 \mathrm{ft} / \mathrm{s}^{2}$. State the initial value problem that describes the motion of this mass.

IVP: $\underline{\frac{9}{32} u^{\prime \prime}+\frac{108}{5} u=7 \sin (3 t), u(0)=+2, u^{\prime}(0)=-8}$
$m g=9$. Thus $m=\frac{9}{32} . \quad k L=m g$. Thus $k(5 / 12)=9$. Thus $k=\frac{108}{5}$.

$$
m u^{\prime \prime}+0 u^{\prime}+k u=7 \sin (3 t)
$$

2.) Given that the solution to $y^{\prime \prime}+y=0$ is $y=c_{1} \cos (t)+c_{2} \sin (t)$, what would be a good guess for a non-homogeneous solution to $y^{\prime \prime}+y=\sin (3 t)$? Note you do not need to solve this differential equation. You also don't need to determine the undetermined coefficients.

$$
\begin{gathered}
\text { Acceptable guess: } \frac{y=A \cos (3 t)+B \sin (3 t)}{\text { Best guess: } y=B \sin (3 t)}
\end{gathered}
$$

Since no y^{\prime} term, don't need cos term. However, both guesses will give you the correct non-homogeneous solution, so both answers are correct since I didn't ask for the best guess.
3.) Suppose that $y_{1}(t)=t$ and $y_{2}(t)=t^{2}$ are solutions to the differential equation, $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. Find the general solution to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=\frac{1}{t}$

General solution: $\underline{y=c_{1} t+c_{2} t^{2}-t \ln |t|}$

$$
W\left(t, t^{2}\right)=\left|\begin{array}{ll}
t & t^{2} \\
1 & 2 t
\end{array}\right|=2 t^{2}-t^{2}=t^{2}
$$

$$
\frac{1}{t}\left|\begin{array}{cc}
0 & t^{2} \\
1 & 2 t
\end{array}\right|=\left|\begin{array}{cc}
0 & t^{2} \\
\frac{1}{t} & 2 t
\end{array}\right|=-t \quad u_{1}(t)=\int \frac{g(t)}{a} \frac{W_{1}}{W}=\int \frac{-t}{t^{2}} d t=\int \frac{-1}{t} d t=-\ln |t|
$$

$$
\left|\begin{array}{cc}
t & 0 \\
1 & \frac{1}{t}
\end{array}\right|=1
$$

$$
u_{2}(t)=\int \frac{g(t)}{a} \frac{W_{2}}{W}=\int \frac{1}{t^{2}} d t=\int t^{-2} d t=-t^{-1}
$$

Non-homog: $-t \ln |t|-t^{-1} t^{2}=-t \ln |t|-t$
General solution: $y=k_{1} t+c_{2} t^{2}-t \ln |t|-t=\left(k_{1}-1\right) t+c_{2} t^{2}-t \ln |t|=c_{1} t+c_{2} t^{2}-t \ln |t|$

FYI:

$y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
$y_{1}(t)=t, y^{\prime}=1, y^{\prime \prime}=0$
and $y_{2}(t)=t^{2}, y^{\prime}=2 t, y^{\prime \prime}=2$
$0+p(t)+q(t) t=0$.
$2+2 p(t) t+q(t) t^{2}=0$.
$0+p(t) t+q(t) t^{2}=0$.
$2+t p(t)=0$. Thus $p(t)=-\frac{2}{t}$
$0+-\frac{2}{t}+q(t) t=0$. Thus $q(t)=\frac{2}{t^{2}}$
$y^{\prime \prime}-\frac{2}{t} y^{\prime}+\frac{2}{t^{2}} y=0$.
By Abel's thm, $W\left(t, t^{2}\right)=e^{\int \frac{2}{t} d t}=e^{2 l n|t|}=e^{l n|t|^{2}}=t^{2}$

