Quiz 3 Form B Sept 25, 2017

1. Sketch the direction field for the autonomous equation $y' = y^2 - 2y - 8$. Find the equilibrium solutions, and classify them as stable or unstable. Sketch the solution with initial value y(0) = 1.

[2] Equilibrium solution: _____. Stability of this equilibrium solution _____.

[2] Equilibrium solution: _____. Stability of this equilibrium solution _____.

[2] If $y = \phi(t)$ is the solution to the initial value problem $y' = y^2 - 2y - 8$, y(0) = 1, what happens to $y = \phi(t)$ as t goes to $+\infty$?

[4] Sketch of Direction field and solution with initial value y(0) = 1:

Choose the best answer for the following problems:

- [2] 2.) If u = y x, then
- A.) $\frac{dy}{dx} = \frac{du}{dx}$ B.) $\frac{dy}{dx} = \frac{dx}{du}$ C.) $\frac{dy}{dx} = \frac{dx}{dy}$
- D.) $\frac{dy}{dx} = \frac{du}{dy}$ E.) $\frac{dy}{dx} = \frac{du}{dx} + 1$ F.) $\frac{dy}{dx} = \frac{du}{dx} + \frac{dx}{du}$

[2] 3.) The integrating factor used to solve the differential equation $\frac{dy}{dx} - \frac{y}{x} = x^2$ is

A.)
$$e^x$$
 B.) e^{-x} C.) x D.) $\frac{1}{x}$

[2] 4.) The solution to the initial value problem $y' = \frac{1-x}{y}$, $y(0) = -\sqrt{3}$ is $y = -\sqrt{-x^2 + 2x + 3}$. State the largest interval on which the solution is defined. A.) $(-1, \infty)$ B.) (-1, 3) C.) $(3, \infty)$ D.) $(-\infty, 1)$ E.) $(-\infty, 3)$ F.) $[-1, \infty)$ G.) [-1, 3] H.) $[3, \infty)$ I.) $(-\infty, 1]$ J.) $(-\infty, 3]$

[2] 5.) A tank contains 100 liters of pure water. Saline solution with a variable concentration $c(t) = e^{\frac{-t}{100}}$ grams of salt per liter is pumped into the tank at rate 1 liter per minute. The tank is kept perfectly mixed and also drains at a rate of 1 liter per minute, so the volume stays constant. Write an initial value problem modeling A(t), the amount of grams of salt dissolved in the solution in the tank at time t minutes.

A.)
$$\frac{dA}{dt} = e^{\frac{-t}{100}} - \frac{Q}{100}, \quad A(0) = 0$$
 B.) $\frac{dA}{dt} = \frac{Q}{100} - e^{\frac{-t}{100}}, \quad A(0) = 0$

C.)
$$\frac{dA}{dt} = \frac{Q}{100} + e^{\frac{-t}{100}}, \quad A(0) = 0$$
 D.) $\frac{dA}{dt} = e^{\frac{-t}{100}} - 100Q, \quad A(0) = 0$

E.)
$$\frac{dA}{dt} = 100Q - e^{\frac{-t}{100}}, \quad A(0) = 0$$

F.) $\frac{dA}{dt} = 100Q + e^{\frac{-t}{100}}, \quad A(0) = 0$

[2] 6.) Note this is a 3.1 problem. The general solution to y'' - 2y' - 8y = 0 is

A.) $y = c_1 e^{2t} + c_2 e^{4t}$ B.) $y = c_1 e^{2t} + c_2 e^{-4t}$ C.) $y = c_1 e^{-2t} + c_2 e^{4t}$ D.) $y = c_1 e^{-2t} + c_2 e^{-4t}$ E.) $y = c_1 e^{2t} + c_2 t e^{2t}$ F.) $y = c_1 cos(2t) + c_2 sin(2t)$