1.	Sketch	the	$\operatorname{direction}$	field	for the	e auton	omous	equat	ion y'	= ;	$y^2 + 2y^2 + 2$	y –	8.	Find
$th\epsilon$	equilib	riun	n solutions	s, and	l classif	y them	as stab	le or ι	$_{ m instabl}$	e. S	Sketch	the	solı	ıtion
wit	h initia	l val	ue $y(0) =$	1.										

[2] Equilibrium solution: ______. Stability of this equilibrium solution ______.

[2] Equilibrium solution: _____. Stability of this equilibrium solution _____.

[2] If $y = \phi(t)$ is the solution to the initial value problem $y' = y^2 + 2y - 8$, y(0) = 1, what happens to $y = \phi(t)$ as t goes to $+\infty$?

[4] Sketch of Direction field and solution with initial value y(0) = 1:

Choose the best answer for the following problems:

[2] 2.) If u = y - x, then

A.)
$$\frac{dy}{dx} = \frac{du}{dx}$$

B.)
$$\frac{dy}{dx} = \frac{dx}{du}$$

C.)
$$\frac{dy}{dx} = \frac{dx}{dy}$$

D.)
$$\frac{dy}{dx} = \frac{du}{dy}$$

E.)
$$\frac{dy}{dx} = \frac{du}{dx} + 1$$

$$F.) \frac{dy}{dx} = \frac{du}{dx} + \frac{dx}{du}$$

A.) e^x

B.) e^{-x}

C.) x

D.) $\frac{1}{x}$

[2] 4.) The solution to the initial value problem $y' = \frac{1-x}{y}$, $y(0) = -\sqrt{3}$ is $y = -\sqrt{-x^2 + 2x + 3}$. State the largest interval on which the solution is defined.

A.)

 $(-1, \infty)$ B.) (-1, 3) C.) $(3, \infty)$ D.) $(-\infty, 1)$ E.) $(-\infty, 3)$

F.) $[-1,\infty)$

G.) [-1,3]

 $H.) [3,\infty)$

I.) $(-\infty, 1]$

J.) $(-\infty, 3]$

5.) A tank contains 100 liters of pure water. Saline solution with a variable [2]concentration $c(t) = e^{\frac{-t}{100}}$ grams of salt per liter is pumped into the tank at rate 1 liter per minute. The tank is kept perfectly mixed and also drains at a rate of 1 liter per minute, so the volume stays constant. Write an initial value problem modeling A(t), the amount of grams of salt dissolved in the solution in the tank at time t minutes.

A.)
$$\frac{dA}{dt} = e^{\frac{-t}{100}} - \frac{Q}{100}, \quad A(0) = 0$$

B.)
$$\frac{dA}{dt} = \frac{Q}{100} - e^{\frac{-t}{100}}, \quad A(0) = 0$$

C.)
$$\frac{dA}{dt} = \frac{Q}{100} + e^{\frac{-t}{100}}, \quad A(0) = 0$$

D.)
$$\frac{dA}{dt} = e^{\frac{-t}{100}} - 100Q$$
, $A(0) = 0$

E.)
$$\frac{dA}{dt} = 100Q - e^{\frac{-t}{100}}, \quad A(0) = 0$$

F.)
$$\frac{dA}{dt} = 100Q + e^{\frac{-t}{100}}, \quad A(0) = 0$$

[2] 6.) Note this is a 3.1 problem. The general solution to y'' + 2y' - 8y = 0 is

A.) $y = c_1 e^{2t} + c_2 e^{4t}$

B.) $y = c_1 e^{2t} + c_2 e^{-4t}$

C.) $y = c_1 e^{-2t} + c_2 e^{4t}$

D.) $y = c_1 e^{-2t} + c_2 e^{-4t}$ E.) $y = c_1 e^{2t} + c_2 t e^{2t}$ F.) $y = c_1 \cos(2t) + c_2 \sin(2t)$