Dec 2, 2016
[5] 1.) Circle T for True and F for false:
1a.) If ϕ is a solution to a first order linear homogeneous differential equation, then $c \phi$ is also a solution to this equation.

1b.) If ϕ is a solution to a first order linear differential equation, then $c \phi$ is also a solution to this equation.
[6] 2. Suppose $A\left[\begin{array}{l}5 \\ 6\end{array}\right]=\left[\begin{array}{c}5 \\ 13\end{array}\right], A\left[\begin{array}{l}3 \\ 5\end{array}\right]=\left[\begin{array}{c}9 \\ 15\end{array}\right], A\left[\begin{array}{c}-1 \\ 3\end{array}\right]=\left[\begin{array}{l}17 \\ 19\end{array}\right], A\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}-4 \\ -2\end{array}\right]$
State the 2 eigenvalues of A : \qquad

State 5 eigenvectors of A :
3.) Given the non-linear system of equations $\frac{d x}{d t}=x-2$ and $\frac{d y}{d t}=x(y-1)^{2}$,
[7] 3a.) The critical point of this system is \qquad .
[8] 3b.) The corresponding linear system near this critical point is \qquad
[7] 3c.) The eigenvalues of this linear system are \qquad .
[7] 3d.) What conclusions can you then draw about the non-linear system:

