Find the solution to the initial value problem:

$$y'' - 6y' + 9y = 8e^{3t} + 27t, \quad y(0) = 5, \quad y'(0) = 2.$$

Step 1: Solve Homogeneous equation y'' - 6y' + 9y = 0Let $y = e^{rt}$. Then $r^2 - 6r + 9 = 0$. Thus $(r - 3)^2 = 0$ and r = 3. Thus general homogeneous solution is $y = c_1 e^{3t} + c_2 t e^{3t}$.

Step 2a: Solve Non-homogeneous equation $y'' - 6y' + 9y = 8e^{3t}$

Since $y = e^{3t}$ and $y = te^{3t}$ are homogeneous solutions, multiples of these cannot be solutions to the non-homogeneouse equation. Thus we will try multiplying by another t and try $y = At^2e^{3t}$.

$$y = At^2 e^{3t}$$
 implies $y' = 2Ate^{3t} + 3At^2 e^{3t}$ and $y'' = 2Ae^{3t} + 6Ate^{3t} + 6Ate^{3t} + 9At^2 e^{3t}$
= $2Ae^{3t} + 12Ate^{3t} + 9At^2 e^{3t}$

Plugging into
$$y'' - 6y' + 9y = 8e^{3t}$$
 and solve for A:
 $2Ae^{3t} + 12Ate^{3t} + 9At^2e^{3t} - 6(2Ate^{3t} + 3At^2e^{3t}) + 9(At^2e^{3t}) = 8e^{3t}$
 $2Ae^{3t} + 12Ate^{3t} + 9At^2e^{3t} - 12Ate^{3t} - 18At^2e^{3t} + 9At^2e^{3t} = 8e^{3t}$
 $2Ae^{3t} + (12 - 12)Ate^{3t} + (9 - 18 + 9)At^2e^{3t} = 8e^{3t}$
 $2Ae^{3t} = 8e^{3t}$ implies $2A = 8$ and thus $A = 4$.
Thus $y = 4t^2e^{3t}$ is anon-homogeneous solution to $y'' - 6y' + 9y = 8e^{3t}$.
Thus general non-homogeneous solution to $y'' - 6y' + 9y = 8e^{3t}$ is
 $y = c_1e^{3t} + c_2te^{3t} + 4t^2e^{3t}$.

Step 2b: Solve Non-homogeneous equation y'' - 6y' + 9y = 27tGuess y = At + B. Then y' = A and y'' = 0. Plugging into y'' - 6y' + 9y = 27t and solve for A and B: 0 - 6A + 9(At + B) = 27t 9At + 9B - 6A = 27t + 0. Thus 9A = 27 and 9B - 6A = 0. Hence A = 3 and 9B = 6A = 6(3) and thus B = 2. Thus y = 3t + 2 is a non-homogeneous solution to y'' - 6y' + 9y = 27t. Thus general non-homogeneous solution to y'' - 6y' + 9y = 27t is $y = c_1e^{3t} + c_2te^{3t} + 3t + 2$.

Hence general non-homogeneous solution to $y'' - 6y' + 9y = 8e^{3t} + 27t$ is $y = c_1e^{3t} + c_2te^{3t} + 4t^2e^{3t} + 3t + 2.$

or equivalently,

$$y = e^{3t}(4t^2 + c_2t + c_1) + 3t + 2.$$

Step 3: Use initial values to solve for c_1 and c_2 :

$$y = e^{3t}(4t^2 + c_2t + c_1) + 3t + 2 \quad \text{implies} \quad y' = 3e^{3t}(4t^2 + c_2t + c_1) + e^{3t}(8t + c_2) + 3$$

$$y(0) = 5: \quad 5 = e^0(4(0)^2 + c_2(0) + c_1) + 3(0) + 2$$

$$5 = c_1 + 2 \text{ implies} \ c_1 = 3$$

$$y'(0) = 2: \quad 2 = 3e^0(4(0)^2 + c_2(0) + c_1) + e^0(8(0) + c_2) + 3$$

$$2 = 3c_1 + c_2 + 3$$
 implies $c_2 = 2 - 3 - 3c_1 = 2 - 3 - 9 = -10$

Thus solution to IVP is $y = e^{3t}(4t^2 - 10t + 3) + 3t + 2$.

Quiz 3

Oct. 14, 2016

1.) Suppose $y = c_1e^{3t} + c_2te^{3t} + 4t^2e^{3t}$ is a solution to $y'' - 6y' + 9y = 8e^{3t}$. Find the solution to the initial value problem:

$$y'' - 6y' + 9y = 8e^{3t} + 27t, \quad y(0) = 5, \quad y'(0) = 2.$$

Note: Solving this IVP is a 4 part problem, but I have already done the first two parts for you.

ANSWER: Since $y = c_1 e^{3t} + c_2 t e^{3t} + 4t^2 e^{3t}$ is a solution to $y'' - 6y' + 9y = 8e^{3t}$,

we know $y = c_1 e^{3t} + c_2 t e^{3t}$ is the general solution to the homogeneous equation is a solution to y'' - 6y' + 9y = 0 and $y = 4t^2 e^{3t}$ is a solution to $y'' - 6y' + 9y = 8e^{3t}$.

Thus parts 1 and 2a are already completed. Repeating the remaining 2 parts:

Step 2b: Solve Non-homogeneous equation y'' - 6y' + 9y = 27t: Guess y = At + B. Then y' = A and y'' = 0.

Plugging into y'' - 6y' + 9y = 27t and solve for A and B: 0 - 6A + 9(At + B) = 27t

9At + 9B - 6A = 27t + 0. Thus 9A = 27 and 9B - 6A = 0.

Hence A = 3 and 9B = 6A = 6(3) and thus B = 2.

Thus y = 3t + 2 is a non-homogeneous solution to y'' - 6y' + 9y = 27t.

Thus general non-homogeneous solution to y'' - 6y' + 9y = 27t is $y = c_1e^{3t} + c_2te^{3t} + 3t + 2$. Thus general non-homog. soln to $y'' - 6y' + 9y = 8e^{3t} + 27t$ is $y = c_1e^{3t} + c_2te^{3t} + 4t^2e^{3t} + 3t + 2$. or equivalently, $y = e^{3t}(4t^2 + c_2t + c_1) + 3t + 2$.

Step 3: Use initial values to solve for c_1 and c_2 : $y = e^{3t}(4t^2 + c_2t + c_1) + 3t + 2$ implies $y' = 3e^{3t}(4t^2 + c_2t + c_1) + e^{3t}(8t + c_2) + 3$ y(0) = 5: $5 = e^0(4(0)^2 + c_2(0) + c_1) + 3(0) + 2$ implies $5 = c_1 + 2$ implies $c_1 = 3$ y'(0) = 2: $2 = 3e^0(4(0)^2 + c_2(0) + c_1) + e^0(8(0) + c_2) + 3$ $2 = 3c_1 + c_2 + 3$ implies $c_2 = 2 - 3 - 3c_1 = 2 - 3 - 9 = -10$

Thus solution to IVP is $y = e^{3t}(4t^2 - 10t + 3) + 3t + 2$.

Answer: $y = e^{3t}(4t^2 - 10t + 3) + 3t + 2$