Find the solution to the initial value problem:

$$
y^{\prime \prime}-6 y^{\prime}+9 y=8 e^{3 t}+27 t, \quad y(0)=5, \quad y^{\prime}(0)=2 .
$$

Step 1: Solve Homogeneous equation $y^{\prime \prime}-6 y^{\prime}+9 y=0$
Let $y=e^{r t}$. Then $r^{2}-6 r+9=0$. Thus $(r-3)^{2}=0$ and $r=3$.
Thus general homogeneous solution is $y=c_{1} e^{3 t}+c_{2} t e^{3 t}$.
Step 2a: Solve Non-homogeneous equation $y^{\prime \prime}-6 y^{\prime}+9 y=8 e^{3 t}$
Since $y=e^{3 t}$ and $y=t e^{3 t}$ are homogeneous solutions, multiples of these cannot be solutions to the non-homogeneouse equation. Thus we will try multiplying by another t and try $y=A t^{2} e^{3 t}$.
$y=A t^{2} e^{3 t}$ implies $y^{\prime}=2 A t e^{3 t}+3 A t^{2} e^{3 t}$ and $y^{\prime \prime}=2 A e^{3 t}+6 A t e^{3 t}+6 A t e^{3 t}+9 A t^{2} e^{3 t}$

$$
=2 A e^{3 t}+12 A t e^{3 t}+9 A t^{2} e^{3 t}
$$

Plugging into $y^{\prime \prime}-6 y^{\prime}+9 y=8 e^{3 t}$ and solve for A :
$2 A e^{3 t}+12 A t e^{3 t}+9 A t^{2} e^{3 t}-6\left(2 A t e^{3 t}+3 A t^{2} e^{3 t}\right)+9\left(A t^{2} e^{3 t}\right)=8 e^{3 t}$
$2 A e^{3 t}+12 A t e^{3 t}+9 A t^{2} e^{3 t}-12 A t e^{3 t}-18 A t^{2} e^{3 t}+9 A t^{2} e^{3 t}=8 e^{3 t}$
$2 A e^{3 t}+(12-12) A t e^{3 t}+(9-18+9) A t^{2} e^{3 t}=8 e^{3 t}$
$2 A e^{3 t}=8 e^{3 t}$ implies $2 A=8$ and thus $A=4$.
Thus $y=4 t^{2} e^{3 t}$ is anon-homogeneous solution to $y^{\prime \prime}-6 y^{\prime}+9 y=8 e^{3 t}$.
Thus general non-homogeneous solution to $y^{\prime \prime}-6 y^{\prime}+9 y=8 e^{3 t}$ is

$$
y=c_{1} e^{3 t}+c_{2} t e^{3 t}+4 t^{2} e^{3 t}
$$

Step 2b: Solve Non-homogeneous equation $y^{\prime \prime}-6 y^{\prime}+9 y=27 t$
Guess $y=A t+B$. Then $y^{\prime}=A$ and $y^{\prime \prime}=0$.
Plugging into $y^{\prime \prime}-6 y^{\prime}+9 y=27 t$ and solve for A and B :
$0-6 A+9(A t+B)=27 t$
$9 A t+9 B-6 A=27 t+0$. Thus $9 A=27$ and $9 B-6 A=0$.
Hence $A=3$ and $9 B=6 A=6(3)$ and thus $B=2$.
Thus $y=3 t+2$ is a non-homogeneous solution to $y^{\prime \prime}-6 y^{\prime}+9 y=27 t$.
Thus general non-homogeneous solution to $y^{\prime \prime}-6 y^{\prime}+9 y=27 t$ is

$$
y=c_{1} e^{3 t}+c_{2} t e^{3 t}+3 t+2
$$

Hence general non-homogeneous solution to $y^{\prime \prime}-6 y^{\prime}+9 y=8 e^{3 t}+27 t$ is

$$
y=c_{1} e^{3 t}+c_{2} t e^{3 t}+4 t^{2} e^{3 t}+3 t+2
$$

or equivalently,

$$
y=e^{3 t}\left(4 t^{2}+c_{2} t+c_{1}\right)+3 t+2
$$

Step 3: Use initial values to solve for c_{1} and c_{2} :

$$
\begin{aligned}
& y=e^{3 t}\left(4 t^{2}+c_{2} t+c_{1}\right)+3 t+2 \quad \text { implies } \quad y^{\prime}=3 e^{3 t}\left(4 t^{2}+c_{2} t+c_{1}\right)+e^{3 t}\left(8 t+c_{2}\right)+3 \\
& y(0)=5: \quad 5=e^{0}\left(4(0)^{2}+c_{2}(0)+c_{1}\right)+3(0)+2 \\
& 5=c_{1}+2 \text { implies } c_{1}=3 \\
& y^{\prime}(0)=2: \quad 2=3 e^{0}\left(4(0)^{2}+c_{2}(0)+c_{1}\right)+e^{0}\left(8(0)+c_{2}\right)+3 \\
& 2=3 c_{1}+c_{2}+3 \text { implies } c_{2}=2-3-3 c_{1}=2-3-9=-10
\end{aligned}
$$

Thus solution to IVP is $y=e^{3 t}\left(4 t^{2}-10 t+3\right)+3 t+2$.
Quiz 3
Oct. 14, 2016
1.) Suppose $y=c_{1} e^{3 t}+c_{2} t e^{3 t}+4 t^{2} e^{3 t}$ is a solution to $y^{\prime \prime}-6 y^{\prime}+9 y=8 e^{3 t}$. Find the solution to the initial value problem:

$$
y^{\prime \prime}-6 y^{\prime}+9 y=8 e^{3 t}+27 t, \quad y(0)=5, \quad y^{\prime}(0)=2
$$

Note: Solving this IVP is a 4 part problem, but I have already done the first two parts for you.
ANSWER: Since $y=c_{1} e^{3 t}+c_{2} t e^{3 t}+4 t^{2} e^{3 t}$ is a solution to $y^{\prime \prime}-6 y^{\prime}+9 y=8 e^{3 t}$,
we know $y=c_{1} e^{3 t}+c_{2} t e^{3 t}$ is the general solution to the homogeneous equation is a solution to $y^{\prime \prime}-6 y^{\prime}+9 y=0 \quad$ and $\quad y=4 t^{2} e^{3 t}$ is a solution to $y^{\prime \prime}-6 y^{\prime}+9 y=8 e^{3 t}$.

Thus parts 1 and 2 a are already completed. Repeating the remaining 2 parts:
Step 2b: Solve Non-homogeneous equation $y^{\prime \prime}-6 y^{\prime}+9 y=27 t$: Guess $y=A t+B$. Then $y^{\prime}=A$ and $y^{\prime \prime}=0$.

Plugging into $y^{\prime \prime}-6 y^{\prime}+9 y=27 t$ and solve for A and $B: \quad 0-6 A+9(A t+B)=27 t$
$9 A t+9 B-6 A=27 t+0$. Thus $9 A=27$ and $9 B-6 A=0$.
Hence $A=3$ and $9 B=6 A=6(3)$ and thus $B=2$.
Thus $y=3 t+2$ is a non-homogeneous solution to $y^{\prime \prime}-6 y^{\prime}+9 y=27 t$.
Thus general non-homogeneous solution to $y^{\prime \prime}-6 y^{\prime}+9 y=27 t \quad$ is $\quad y=c_{1} e^{3 t}+c_{2} t e^{3 t}+3 t+2$.
Thus general non-homog. soln to $y^{\prime \prime}-6 y^{\prime}+9 y=8 e^{3 t}+27 t$ is $y=c_{1} e^{3 t}+c_{2} t e^{3 t}+4 t^{2} e^{3 t}+3 t+2$. or equivalently, $y=e^{3 t}\left(4 t^{2}+c_{2} t+c_{1}\right)+3 t+2$.

Step 3: Use initial values to solve for c_{1} and c_{2} :
$y=e^{3 t}\left(4 t^{2}+c_{2} t+c_{1}\right)+3 t+2 \quad$ implies $\quad y^{\prime}=3 e^{3 t}\left(4 t^{2}+c_{2} t+c_{1}\right)+e^{3 t}\left(8 t+c_{2}\right)+3$
$y(0)=5: \quad 5=e^{0}\left(4(0)^{2}+c_{2}(0)+c_{1}\right)+3(0)+2$ implies $5=c_{1}+2$ implies $c_{1}=3$
$y^{\prime}(0)=2: \quad 2=3 e^{0}\left(4(0)^{2}+c_{2}(0)+c_{1}\right)+e^{0}\left(8(0)+c_{2}\right)+3$

$$
2=3 c_{1}+c_{2}+3 \text { implies } c_{2}=2-3-3 c_{1}=2-3-9=-10
$$

Thus solution to IVP is $y=e^{3 t}\left(4 t^{2}-10 t+3\right)+3 t+2$.

