[10] 1a.) Draw the direction field for the following differential equation:

$$
y^{\prime}=(y-2)(y+1)^{2}
$$

[4] 1b.) On the direction field above, draw the solution to the above differential equation that satisfies the initial condition $y(1)=0$.
[6] 1c.) Does the differential equation whose direction field is given above have any equilibrium solutions? If so, state whether they are stable, semi-stable or unstable.

Equilibrium solution $=$ constant solution, $y=c$ and thus $y^{\prime}=0$
$(y-2)(y+1)^{2}=0$ implies $y=2,-1$
$y=2$ is unstable, while $y=-1$ is semi-stable.
[15] 2.) Solve the initial value problem for y : $y^{\prime}+\frac{3 x}{y-4}=0, y(1)=-2$.
$\frac{d y}{d x}=-\frac{3 x}{y-4}$
$\int(y-4) d y=\int-3 x d x$
$\frac{y^{2}}{2}-4 y=-\frac{3}{2} x^{2}$
$y^{2}-8 y=-3 x^{2}+C$
$y^{2}-8 y+3 x^{2}+C=0$
$y=\frac{8 \pm \sqrt{64-4\left(3 x^{2}+C\right)}}{2}=4 \pm \sqrt{16-3 x^{2}+C}=y$
$y(1)=-2:-2=4 \pm \sqrt{16-3(1)^{2}+C}$ implies $-6=-\sqrt{16-3+C}$
Note initial value determines sign of \pm. In this case, IVP only has a solution when we choose the negative sign. The the IVP in this case means $y=4-\sqrt{16-3 x^{2}+C}$ where we determine C below:
$36=13+C$. Thus $C=36-13=23$ and $y=4-\sqrt{16-3 x^{2}+23}=4-\sqrt{39-3 x^{2}}$

Answer: $\quad y=4-\sqrt{39-3 x^{2}}$
3.) Suppose $y^{\prime}=y-t+1, y(0)=0$.

Let $\phi_{0}(t)=0$ and define $\left\{\phi_{n}(t)\right\}$ by the method of successive approximation (i.e, Picards iteration method). Determine the following:
$y^{\prime}=f(t, y)$
$\phi_{1}(t)=\int_{0}^{t} f\left(s, \phi_{0}(s)\right) d s=\int_{0}^{t} f(s, 0) d s=\int_{0}^{t}(0-s+1) d s=$
$\left.\left(-\frac{s^{2}}{2}+s\right)\right|_{0} ^{t}=-\frac{t^{2}}{2}+t-0$
[3] 3a) $\phi_{1}(t)=\underline{-\frac{t^{2}}{2}+t}$
$\phi_{2}(t)=\int_{0}^{t} f\left(s, \phi_{1}(s)\right) d s=\int_{0}^{t} f\left(s,-\frac{s^{2}}{2}+s\right) d s=\int_{0}^{t}\left(-\frac{s^{2}}{2}+s-s+1\right) d s$
$=\int_{0}^{t}\left(-\frac{s^{2}}{2}+1\right) d s=\left.\left(-\frac{s^{3}}{6}+s\right)\right|_{0} ^{t}=-\frac{t^{3}}{6}+t-0$
$[3] 3 \mathrm{~b}) \phi_{2}(t)=\underline{-\frac{t^{3}}{6}+t}$
$\phi_{3}(t)=\int_{0}^{t} f\left(s, \phi_{2}(s)\right) d s=\int_{0}^{t} f\left(s,-\frac{s^{3}}{6}+s\right) d s=\int_{0}^{t}\left(-\frac{s^{3}}{6}+s-s+1\right) d s$
$=\int_{0}^{t}\left(-\frac{s^{3}}{6}+1\right) d s=\left.\left(-\frac{s^{4}}{24}+s\right)\right|_{0} ^{t}=-\frac{t^{3}}{24}+t-0$
[3] 3c) $\phi_{3}(t)=-\frac{t^{4}}{24}+t$
[4] 3d) $\phi_{n}(t)=\underline{-\frac{t^{n+1}}{(n+1)!}+t}$
[3] 3e) $\lim _{n \rightarrow \infty} \phi_{n}(t)=\underline{t}$
[2] 3f) Is $\phi(t)=\lim _{n \rightarrow \infty} \phi_{n}(t)$ a solution to $y^{\prime}=y-t+1, y(0)=0$? yes
[2] 3g) Is $\phi(t)=\lim _{n \rightarrow \infty} \phi_{n}(t)$ the unique solution to $y^{\prime}=y-t+1, y(0)=0$? yes
[15] 4a.) Solve $y^{\prime \prime}-8 y^{\prime}+16 y=0$

Educated guess: $y=e^{r t}$. Then $y^{\prime}=r e^{r t}$ and $y^{\prime \prime}=r^{2} e^{r t}$
Plugging in the guess into our equation:
$r^{2} e^{r t}-8 r e^{r t}+16 e^{r t}=0$
Since $e^{r t}>0$, we can divide both sides of the above equation by $r e^{r t}$ without loosing any solutions:
$r^{2}-8 r+16=0$ implies $(r-4)^{2}=0$ and thus $r=4$.
Thus $y=e^{4 t}$ is a solution. We can check by plugging in (as we did in class for a different example) that $y=t e^{4 t}$ is also a solution.

Sidenote: $\left\{e^{4 t}, t e^{4 t}\right\}$ is a linear independent set and thus a basis for our solution. We can check linear independence by calculating the Wronskian.

$$
\text { Answer: } \quad y=c_{1} e^{4 t}+c_{2} t e^{4 t}
$$

[15] 4b.) Solve $y^{\prime \prime}-y^{\prime}+3 y=0$

Educated guess: $y=e^{r t}$. Then $y^{\prime}=r e^{r t}$ and $y^{\prime \prime}=r^{2} e^{r t}$
Plugging in the guess into our equation:
$r^{2} e^{r t}-r e^{r t}+3 e^{r t}=0$
Since $e^{r t}>0$, we can divide both sides of the above equation by $r e^{r t}$ without loosing any solutions:
$r^{2}-r+3=0$ implies $r=\frac{1 \pm \sqrt{1-4(3)}}{2}=\frac{1 \pm \sqrt{11}}{2}=\frac{1 \pm i \sqrt{11}}{2}$.

$$
\text { Answer: } \quad y=c_{1} e^{\frac{t}{2}} \cos \left(\frac{\sqrt{11}}{2} t\right)+c_{2} e^{\frac{t}{2}} \sin \left(\frac{\sqrt{11}}{2} t\right)
$$

[15] 5.) Let $y=y_{1}(t)$ be a solution of $y^{\prime}+p(t) y=0$ and let $y=y_{2}(t)$ be a solution of $y^{\prime}+p(t) y=g(t)$. Show that $y=y_{1}(t)+y_{2}(t)$ is a solution of $y^{\prime}+p(t) y=g(t)$.

Proof: Since $y=y_{1}(t)$ is a solution of $y^{\prime}+p(t) y=0$, we know that $y_{1}^{\prime}+p(t) y_{1}=0$.
Since $y=y_{2}(t)$ is a solution of $y^{\prime}+p(t) y=g(t), \quad y_{2}^{\prime}+p(t) y_{2}=g(t)$
Claim: $y=y_{1}(t)+y_{2}(t)$ is a solution of $y^{\prime}+p(t) y=g(t)$.
We will plug $y=y_{1}(t)+y_{2}(t)$ into the LHS to determine that the LHS $=$ RHS:

$$
\begin{aligned}
\left(y_{1}(t)+y_{2}(t)\right)^{\prime}+p(t)\left(y_{1}(t)+\right. & \left.y_{2}(t)\right)=y_{1}^{\prime}(t)+y_{2}^{\prime}(t)+p(t) y_{1}(t)+p(t) y_{2}(t) \\
& =\left[y_{1}^{\prime}(t)+p(t) y_{1}(t)\right]+\left[y_{2}^{\prime}(t)+p(t) y_{2}(t)\right]=0+g(t)=g(t)
\end{aligned}
$$

Hence $y=y_{1}(t)+y_{2}(t)$ is a solution of $y^{\prime}+p(t) y=g(t)$.

Alternate proof: Since $y=y_{1}(t)$ is a solution of $y^{\prime}+p(t) y=0$, we know that

$$
\begin{equation*}
y_{1}^{\prime}+p(t) y_{1}=0 \tag{1}
\end{equation*}
$$

Since $y=y_{2}(t)$ is a solution of $y^{\prime}+p(t) y=g(t)$.

$$
\begin{equation*}
y_{2}^{\prime}+p(t) y_{2}=g(t) \tag{2}
\end{equation*}
$$

If we add equations (1) and (2), we obtain:

$$
\left[y_{1}^{\prime}(t)+p(t) y_{1}(t)\right]+\left[y_{2}^{\prime}(t)+p(t) y_{2}(t)\right]=0+g(t)
$$

Thus $y_{1}^{\prime}(t)+y_{2}^{\prime}(t)+p(t) y_{1}(t)+p(t) y_{2}(t)=g(t)$
and $\left(y_{1}(t)+y_{2}(t)\right)^{\prime}+p(t)\left(y_{1}(t)+y_{2}(t)\right)=g(t)$
Hence $y=y_{1}(t)+y_{2}(t)$ is a solution of $y^{\prime}+p(t) y=g(t)$.

Alternate proof:
Claim: $L(f)=f^{\prime}+p f$ is a linear function where f and p are functions of t.
Proof of claim: Let a, b be constants and f, g be functions of t.
$L(a f+b g)=(a f+b g)^{\prime}+p(a f+b g)=a f^{\prime}+b g^{\prime}+p a f+p b g=a f^{\prime}+p a f+b g^{\prime}+p b g=$ $\left[a\left(f^{\prime}+p f\right)\right]+\left[b\left(g^{\prime}+p g\right)\right]=L(f)+L(g)$

We will now show that $y=y_{1}(t)+y_{2}(t)$ is a solution of $y^{\prime}+p(t) y=g(t)$:

Since $y=y_{1}(t)$ is a solution of $y^{\prime}+p(t) y=0, \quad L\left(y_{1}\right)=0$.
Since $y=y_{2}(t)$ is a solution of $y^{\prime}+p(t) y=g(t), L\left(y_{2}\right)=g(t)$
$L\left(y_{1}+y_{2}\right)=L\left(y_{1}\right)+L\left(y_{2}\right)=0+g(t)=g(t)$. Thus $y=y_{1}(t)+y_{2}(t)$ is a solution of $y^{\prime}+p(t) y=g(t)$.

Note similar proofs would show that $y=c y_{1}(t)+y_{2}(t)$ is a solution of $y^{\prime}+p(t) y=g(t)$ for any constant c.

