```
http://bcs.wiley.com/he-bcs/Books?action=resource
Ch 2.2: Separable Equations
In this section we examine a subclass of linear and nonlinear
first order equations. Consider the first order equation
    dy}dx=f(x,y
# We can rewrite this in the form
    M(x,y)+N(x,y) \frac{dy}{dx}=0
For example, let M(x,y)=-f(x,y) and N(x,y)=1. There may
    be other ways as well. In differential form,
    M(x,y)dx+N(x,y)dy=0
\approx}\mathrm{ If }M\mathrm{ is a function of }x\mathrm{ only and }N\mathrm{ is a function of }y\mathrm{ only, then
M(x)dx+N(y)dy=0
In this case, the equation is called separable
```

Example 1: Solving a Separable Equation \rightarrow Solve the follon \rightarrow $\frac{d y}{d x}=\frac{x^{2}+1}{y^{2}-1}$
Separating variables, and using calculus, we obtain
$\left(y^{2}-1\right) d y=\left(x^{2}+1\right) d x$
$\int\left(y^{2}-1\right) d y=\int\left(x^{2}+1\right) d x$
$\frac{1}{3} y^{3}-y=\frac{1}{3} x^{3}+x+C$
$y^{3}-3 y=x^{3}+3 x+C$
The equation above defines the solution y implicitly. A graph showing the direction field and implicit plots of several integral curves for the differential equation is given above.

Example 2:
Implicit and Explicit Solutions (1 of 4)
\rightarrow Solve the following first order nonlinear $\rightarrow \rightarrow \rightarrow$ $\frac{d y}{d x}=\frac{3 x^{2}+4 x+2}{2(y-1)}$
Separating variables and using calculus, we obtain $2(y-1) d y=\left(3 x^{2}+4 x+2\right) d x$ $2 \int(y-1) d y=\int\left(3 x^{2}+4 x+2\right) d x$
$y^{2}-2 y=x^{3}+2 x^{2}+2 x+C$
The equation above defines the solution y implicitly. An explicit expression for the solution can be found in this case $y^{2}-2 y-\left(x^{3}+2 x^{2}+2 x+C\right)=0 \Rightarrow y=\frac{2 \pm \sqrt{4+4\left(x^{3}+2 x^{2}+2 x+C\right)}}{2}$ $y=1 \pm \sqrt{x^{3}+2 x^{2}+2 x+C}$

Example 2: Domain (4 of 4)
$\stackrel{\text { Thus the solutions to the initial value problem }}{\rightarrow} \rightarrow \longrightarrow$
$\frac{d y}{d x}=\frac{3 x^{2}+4 x+2}{2(y-1)}, y(0)=-1$
$d x \quad 2(y-1)$
are given by
are given by
$y^{2}-2 y=x^{3}+2 x^{2}+2 x+3$ (implicit)
$y=1-\sqrt{x^{3}+2 x^{2}+2 x+4} \quad$ (explicit)
From explicit representation of y, it follows that
$y=1-\sqrt{x^{2}(x+2)+2(x+2)}=1-\sqrt{(x+2)\left(x^{2}+2\right)}$
and hence domain of y is $(-2, \infty)$. Note $x=-2$ yields $y=1$,
which makes denominator of dy/dx zero (vertical tangent).
Conversely, domain of y can be estimated by locating vertical
tangents on graph (useful for implicitly defined solutions)
tangents on graph (useful for implicitly defined solutions).

Example 3: Implicit Solution of Initial Value Problem (1 of 2)
$\overrightarrow{\text { Consider the following initial value problem: }} \rightarrow \longrightarrow \longrightarrow$
$y^{\prime}=\frac{y \cos x}{1+3 y^{3}}, y(0)=1$
\# Separating variables and using calculus, we obtain
$\frac{1+3 y^{3}}{y} d y=\cos x d x$
$\int\left(\frac{1}{y}+3 y^{2}\right) d y=\int \cos x d x$
$\ln |y|+y^{3}=\sin x+C$
\# Using the initial condition, it follows that
$\ln y+y^{3}=\sin x+1$

Example 3: Graph of Solutions (2 of 2)
$\xrightarrow[\text { Thus }]{\text { Example 3: Graph of Solutions (2 of 2) } \longrightarrow \longrightarrow \longrightarrow}$ $y^{\prime}=\frac{y \cos x}{1+3 y^{y^{3}}}, y(0)=1 \Rightarrow \ln y+y^{3}=\sin x+1$
« The graph of this solution (black), along with the graphs of
the direction field and several integral curves (blue) for this differential equation, is given below.

