Thm 2.4.2: Suppose the functions
$z=f(t, y)$ and $z=\frac{\partial f}{\partial y}(t, y)$ are cont. on $(a, b) \times(c, d)$ and the point $\left(t_{0}, y_{0}\right) \in(a, b) \times(c, d)$,
then there exists an interval $\left(t_{0}-h, t_{0}+h\right) \subset(a, b)$ such that there exists a unique function $y=\phi(t)$ defined on $\left(t_{0}-\right.$ $\left.h, t_{0}+h\right)$ that satisfies the following initial value problem:

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

Thm 7.1.1: Suppose the functions
$z=F_{i}\left(t, x_{1}, \ldots, x_{n}\right)$ and $z=\frac{\partial F_{i}}{\partial x_{j}}\left(t, x_{1}, \ldots, x_{n}\right)$ are continuous for all i, j in a region $R=$
$\left\{\left(t, x_{1}, \ldots, x_{n}\right) \mid a<t<b, a_{1}<x_{1}<b_{1}, \ldots, a_{n}<x_{n}<b_{n}\right\}$, and let the point $\left(t_{0}, x_{1}^{0}, \ldots, x_{n}^{0}\right) \in R$.
Then there exists an interval $\left(t_{0}-h, t_{0}+h\right) \subset(a, b)$ such that there exists a unique solution defined on $\left(t_{0}-h, t_{0}+h\right)$,

$$
x_{1}=\phi_{1}(t), \ldots, x_{n}=\phi_{n}(t)
$$

that satisfies the following initial value problem:

$$
\begin{aligned}
& x_{1}^{\prime}=F_{1}\left(t, x_{1}, \ldots, x_{n}\right) \\
& x_{2}^{\prime}=F_{2}\left(t, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

$$
x_{n}^{\prime}=F_{n}\left(t, x_{1}, \ldots, x_{n}\right)
$$

$x_{1}\left(t_{0}\right)=x_{1}^{0}, x_{2}\left(t_{0}\right)=x_{2}^{0}, \ldots, x_{n}\left(t_{0}\right)=x_{n}^{0}$

Theorem 4.1.1: If $p_{i}:(a, b) \rightarrow R, i=1, \ldots, n$ and $g:(a, b) \rightarrow R$ are continuous and $a<t_{0}<b$, then there exists a unique function $y=\phi(t), \phi:(a, b) \rightarrow R$ that satisfies the initial value problem

$$
\begin{gathered}
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=g(t) \\
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}, \quad y^{(n-1)}\left(t_{0}\right)=y_{n-1}
\end{gathered}
$$

Thm 7.1.2: If $p_{i j}$ and g_{i} are continuous on (a, b) and the point $t_{0} \in(a, b)$, then there exists a unique solution $x_{1}=\phi_{1}(t), \ldots, x_{n}=\phi_{n}(t)$ defined on (a, b) that satisfies the following initial value problem:
$\left(\begin{array}{c}x_{1}^{\prime} \\ \cdot \\ \cdot \\ \cdot \\ x_{n}^{\prime}\end{array}\right)=\left(\begin{array}{cccc}p_{11}(t) & p_{12}(t) & \ldots & p_{1 n}(t) \\ p_{21}(t) & p_{22}(t) & \ldots & p_{2 n}(t) \\ & & \cdot & \\ & & \cdot & \\ p_{n 1}(t) & p_{n 2}(t) & \ldots & p_{n n}(t)\end{array}\right)\left(\begin{array}{c}x_{1} \\ \cdot \\ \cdot \\ \cdot \\ x_{n}\end{array}\right)+\left(\begin{array}{c}g_{1}(t) \\ \cdot \\ \cdot \\ \cdot \\ g_{n}(t)\end{array}\right)$
$x_{1}\left(t_{0}\right)=x_{1}^{0}, x_{2}\left(t_{0}\right)=x_{2}^{0},, \ldots, x_{n}\left(t_{0}\right)=x_{n}^{0}$
Thm 7.4.1: If $\mathbf{f}_{\mathbf{k}}(t)$ are solutions to $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ where $P_{i j}(t)=p_{i j}(t)$, then the linear combination $\sum_{i=1}^{k} c_{i} \mathbf{f}_{\mathbf{k}}(t)$ is also a solution for any constants c_{i}.

Thm 7.4.2: If $\mathbf{f}_{\mathbf{1}}, \ldots, \mathbf{f}_{\mathbf{n}}$ are linearly independent solutions to $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on (a, b), then if $\mathbf{x}=\mathbf{g}(t)$ is also a solution to this equation, then $\mathbf{g}(t)=\sum_{i=1}^{n} c_{i} \mathbf{f}_{\mathbf{k}}(t)$ for some constants c_{i}

